摘 要: | 基于轨道几何检测数据和动力学仿真模型计算的轮轨力、车体加速度等动力响应数据,首先利用相干函数分析轨道几何与车辆响应的相关性,然后利用深度学习中的长短时记忆网络建立预测模型,自动学习轨道几何与车辆响应的复杂关系,最后利用模型预测的车辆响应来识别轨道病害和评估轨道状态。结果表明:车体加速度、轮重减载率、脱轨系数主要与高低、轨向、超高的相关性显著;预测模型能够有效预测货车动力响应,预测值与仿真值的相关系数在0.8以上,为强相关;预测模型能够有效识别一些轨道几何不超限、但车辆响应超限的轨道几何隐形病害,实现基于车辆响应评估轨道状态。
|