摘 要: | 路段多步行程时间预测数据是动态交通诱导系统的重要参数,但已有研究成果,大多集中于一步预测,且存在适应性不强、计算量大、基础数据需求多等不足.应用谱分析及Karhunen-Loeve(K-L)变换对历史及当前检测行程时间序列进行分解与重构,重构时以历史序列与当前检测序列的欧式距离作为相似性度量指标,优化重构时的特征向量系数,使与当前检测序列相似度高的历史序列信息在重构中占据主要地位,通过重构,实现对后续若干时段的行程时间的预测,实测数据检验显示该方法可实现多步预测,预测精度良好,较以往方法有所提高,且历史数据需求量小,计算量小.
|