首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的驾驶员昼夜动态空间距离判识规律
引用本文:赵炜华,刘浩学,赵建有,杨立本,殷利. 基于BP神经网络的驾驶员昼夜动态空间距离判识规律[J]. 中国公路学报, 2010, 0(2)
作者姓名:赵炜华  刘浩学  赵建有  杨立本  殷利
作者单位:长安大学汽车学院;
基金项目:国家自然科学基金项目(50778023)
摘    要:为研究昼夜动态环境中驾驶员对空间距离判识的规律,进行了实际道路试验。随机选取32名驾驶员分别在昼、夜环境中不同深度距离和速度下,判识红、绿色障碍物的空间距离,统计并检验驾驶员对红、绿色障碍物判识距离的差异,获得判识特征值;运用BP神经网络拟合距离判识结果,分析距离判识变化规律。结果表明:BP神经网络可以很好地拟合距离判识变化规律,精度优于现有模型;绝对距离和相对距离判识结果均随速度增加而减小,随深度距离增加而增大;夜间判识距离大于白天,驾驶员对相对距离判识准确性高。

关 键 词:交通工程  驾驶员  BP神经网络  距离判识  交通心理  深度距离  照度  

Law of BP Neural Network-based Space Distance Cognition of Driver in Dynamic Environment at Day and Night
ZHAO Wei-hua,LIU Hao-xue,ZHAO Jian-you,YANG Li-ben,YIN Li. Law of BP Neural Network-based Space Distance Cognition of Driver in Dynamic Environment at Day and Night[J]. China Journal of Highway and Transport, 2010, 0(2)
Authors:ZHAO Wei-hua  LIU Hao-xue  ZHAO Jian-you  YANG Li-ben  YIN Li
Affiliation:ZHAO Wei-hua,LIU Hao-xue,ZHAO Jian-you,YANG Li-ben,YIN Li (School of Automobile,Chang'an University,Xi'an 710064,Shaanxi,China)
Abstract:In order to study the law of distance cognition of driver in dynamic environment at day and night,authors carried out the actual road test.32 drivers were randomly selected to separately recognize space distances of red and green obstacles under different depth distances and velocities at day and night.Authors analyzed cognition difference between red obstacles and green obstacles and got character values by statistical method.Distance cognition results were simulated by BP neural network and variation laws...
Keywords:traffic engineering  driver  BP neural network  distance cognition  traffic psych-ology  depth distance  illumination  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号