首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分和BP神经网络的汽车保有量预测
引用本文:田振中,彭晗,薛海培. 基于主成分和BP神经网络的汽车保有量预测[J]. 交通标准化, 2008, 0(10). DOI: 10.3869/j.issn.1002-4786.2008.10.052
作者姓名:田振中  彭晗  薛海培
作者单位:郑州大学升达经贸管理学院,河南,郑州,451191;华北水利水电学院,河南,郑州,450011
摘    要:针对汽车保有量预测建模中输入因子过多而导致神经网络规模过大、泛化能力差的问题,通过主成分分析法和贝叶斯正则化方法对BP神经网络进行改进,可简化网络结构,增强泛化能力。对此,以我国汽车保有量预测为例进行的仿真计算表明,结果令人满意,这也同时证明了该方法用于汽车保有量预测的可行性与有效性。

关 键 词:汽车保有量  BP神经网络  主成分分析  预测

Vehicle Quantity Prediction Based on Principal Component and BP Neural Network
TIAN Zhen-zhong,PENG Han,XUE Hai-pei. Vehicle Quantity Prediction Based on Principal Component and BP Neural Network[J]. Communications Standardization, 2008, 0(10). DOI: 10.3869/j.issn.1002-4786.2008.10.052
Authors:TIAN Zhen-zhong  PENG Han  XUE Hai-pei
Abstract:In allusion to the poor generalization and the problem that too many input factors in prediction model of vehicle quantity leads to the big scale of neural network,the principal component analysis method and Bayesian regularization are utilized to modify BP neural network,which can simplify network structure and strengthen generalization.Given this,the emulation calculations as for vehicle quantity prediction in China show that the results is satisfying and prove its feasibility and effectiveness of vehicle quantity prediction.
Keywords:vehicle quantity  BP neural network  principal component analysis  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号