首页 | 本学科首页   官方微博 | 高级检索  
     

黄土沟壑区湿软路基沉降预测模型
引用本文:彭小云, 叶万军, 折学森, 赵娟, 刘钊. 黄土沟壑区湿软路基沉降预测模型[J]. 交通运输工程学报, 2007, 7(2): 70-75.
作者姓名:彭小云  叶万军  折学森  赵娟  刘钊
作者单位:1.武警工程学院 建筑工程系, 陕西 西安 710086;;2.长安大学 特殊地区公路工程教育部重点实验室, 陕西 西安 710064;;3.西安科技大学 地质与环境工程系, 陕西 西安 710054
摘    要:为合理考虑路基沉降预测时诸多影响因素的不确定性与随机性, 提出基于神经网络范例推理的路基沉降预测模型。以同类工程的成功经验为基础, 建立了基于神经网络的沉降范例检索模型, 在范例相似度计算中, 引入归一化效用函数, 通过神经网络的学习, 建立当前沉降范例与沉降源范例之间的相似关系, 最终实现当前沉降范例的沉降预测。对黄土沟壑区湿软路基沉降预测结果表明, 该模型具有较高的预测准确性, 预测值与实测值绝对误差小于10%。

关 键 词:路基工程   湿软黄土路基   沉降预测   范例推理   神经网络
文章编号:1671-1637(2007)02-0070-06
收稿时间:2006-12-01
修稿时间:2006-12-01

Settlement prediction model of wettest-soft loess subgrade in ravine regions
Peng Xiao-yun, Ye Wan-jun, She Xue-sen, Zhao Juan, Liu Zhao. Settlement prediction model of wettest-soft loess subgrade in ravine regions[J]. Journal of Traffic and Transportation Engineering, 2007, 7(2): 70-75.
Authors:Peng Xiao-yun  Ye Wan-jun  She Xue-sen  Zhao Juan  Liu Zhao
Affiliation:1. Department of Architecture Engineering, Engineering College of CAPF, Xi'an 710086, Shaanxi, China;;2. Key Laboratory for Special Region Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, Shaanxi, China;;3. Department of Geology and Environment Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
Abstract:In view of the randomness and uncertainty of effect factors in subgrade settlement prediction,a prediction model based on case-based reasoning integrated with neural network was presented.In the model,a model for indexing subgrade settlement cases with neural network was set up,the successful experiences of similar engineerings were analyzed,and a new kind of utility function to calculate the similarities of the cases were introduced.The similarity relationship among the settlement cases was established by training neural network,so that the most similar base case to settlement target case was found out.Settlement prediction result of wettest-soft loess subgrade in ravine regions shows that the absalute errors between predicted data and actual ones are less than 10%,and the model has high prediction precision.3 tabs,2 figs,10 refs.
Keywords:subgrade engineering  wettest-soft loess subgrade  settlement prediction  case-based reasoning  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号