首页 | 本学科首页   官方微博 | 高级检索  
     

小波包能量特征法在汽车变速器轴承故障诊断中的应用
引用本文:陆森林,张军,和卫星,王以顺. 小波包能量特征法在汽车变速器轴承故障诊断中的应用[J]. 汽车工程, 2007, 29(6): 537-539
作者姓名:陆森林  张军  和卫星  王以顺
作者单位:江苏大学汽车与交通工程学院,镇江,212013;江苏大学汽车与交通工程学院,镇江,212013;江苏大学汽车与交通工程学院,镇江,212013;江苏大学汽车与交通工程学院,镇江,212013
摘    要:归纳和总结了小波神经网络轴承故障诊断法的实施步骤,阐述了小波包的原理,并以变速器轴承故障诊断为例,提取了小波包节点能量作为反映变速器轴承故障类型的振动信号特征参数,并用这些特征参数训练BP神经网络进行故障模式识别。结果表明,如果神经网络设计合理,训练适当,则具有很强的故障识别能力。说明了利用小波包能量法和BP神经网络进行变速器轴承故障诊断是可行而且有效的。

关 键 词:振动  轴承  故障诊断  小波包  BP神经网络
修稿时间:2006-06-082006-09-06

The Application of Wavelet Packet Energy Feature to the Fault Diagnosis of Automotive Transmission Bearing
Lu Senlin,Zhang Jun,He Weixing,Wang Yishun. The Application of Wavelet Packet Energy Feature to the Fault Diagnosis of Automotive Transmission Bearing[J]. Automotive Engineering, 2007, 29(6): 537-539
Authors:Lu Senlin  Zhang Jun  He Weixing  Wang Yishun
Affiliation:Yishun School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013
Abstract:A fault diagnosis method for rolling bearings in automotive transmission based on wavelet packet energy feature and BP neural network is presented. The wavelet decomposition is conducted on the vibration signals of bearing, and the energy of wavelet node is extracted as the feature parameter of vibration signal of bearing. Then these feature parameters are used to train BP neural network for fault pattern recognition. The results show that the neural network with rational design and proper training has strong capability of fault identification and that applying wavelet packet energy feature and BP neural network to fault diagnosis of transmission bearing is feasible and effective.
Keywords:Vibration  Bearing  Fault diagnosis  Wavelet packet  BP neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号