首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传优化的水面无人船艇神经网络智能控制
引用本文:王仁强,王昭淯,邓华. 基于遗传优化的水面无人船艇神经网络智能控制[J]. 广州航海高等专科学校学报, 2020, 28(1): 31-34. DOI: 10.3969/j.issn.1009-8526.2020.01.006
作者姓名:王仁强  王昭淯  邓华
作者单位:江苏海事职业技术学院 航海技术学院,江苏 南京211170,江苏海事职业技术学院 航海技术学院,江苏 南京211170,江苏海事职业技术学院 航海技术学院,江苏 南京211170
摘    要:利用GA智能优化算法和RBF神经网络逼近算法设计了一种USV运动滑模理想跟踪控制方法.首先利用改进的遗传算法对RBF网络参数进行在线寻优以进而提高其逼近性能.其次,将学习速度较快的局部RBF神经网络对滑模控制设计中存在的船舶运动系统函数不确定项进行逼近,使得由于滑模面的不间断切换引起的控制输入抖振问题得到有效地解决.对...

关 键 词:遗传优化  RBF神经网络  滑模控制  水面无人船艇

Genetic Optimized RBF Neural Network Based Intelligent Control Algorithm of USV
WANG Ren-qiang,WANG Zhao-yu,DENG Hua. Genetic Optimized RBF Neural Network Based Intelligent Control Algorithm of USV[J]. Journal of Guangzhou Maritime College, 2020, 28(1): 31-34. DOI: 10.3969/j.issn.1009-8526.2020.01.006
Authors:WANG Ren-qiang  WANG Zhao-yu  DENG Hua
Affiliation:(Navigation College,Jiangsu Maritime Institute,Nanjing Jiangsu 211170,China)
Abstract:The intelligent tracking algorithm of Unmanned Surface Vehicle was proposed based on the optimized RBF network.By modifying the adaptation value and the mutation probability,it is possible to solve the problem of premature convergence of the GA which was used to optimize the network parameters online to solve the problem,and then improve its approximation performance.And then,the RBF neural network,with the advantage of learning fast,was used to approximate the uncertainties of the function of the USV motion system during the ideal Sliding Mode Control designing so that the control input chattering problem caused by the uninterrupted switching of the sliding surface is effectively overcome.A comparative study shows that under the same conditions,the stabilization time of the intelligent control system is faster,the average overshoot is smaller,and the input rudder angle is smoother.
Keywords:genetic optimizition  RBF neural network  sliding mode control  unmanned surface vehicle
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号