首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical investigation of turbolag reduction in HD CNG engines by means of exhaust valve variable actuation and spark timing control
Authors:M Baratta  E Spessa  P Mairone
Institution:1.IC Engines Advanced Laboratory,Politecnico di Torino,Torino,Italy;2.Centro Ricerche Fiat,Orbassano,Italy
Abstract:Turbocharging port-injected Natural Gas (NG) engines allows them to recover gaseous-fuel related power gap with respect to gasoline engines. However, turbolag reduction is necessary to achieve high performance during engine transient operations and to improve vehicle fun-to-drive characteristics. Significant support for the study of turbocharged Compressed Natural Gas (CNG) engines and guidelines for the turbo-matching process can be provided by 1-D numerical simulation tools. However, 1-D models are predictive only when a careful tuning procedure is set-up and carried out on the basis of the experimental data. In this paper, a 1-D model of a Heavy-Duty (HD) turbocharged CNG engine was set up in the GT-POWER (Gamma Technologies Inc., Westmont, IL, US) environment to simulate transient operations and to evaluate the turbolag. An extensive experimental activity was carried out to provide experimental data for model tuning. The model buildup and tuning processes are described in detail with specific reference to the turbocharger model, whose correct calibration is a key factor in accounting for the effects of turbine flow pulsations. The second part of the paper focuses on the evaluation of different strategies for turbolag reduction, namely, exhaust valve variable actuation and spark timing control. Such strategies were aimed at increasing the engine exhaust-gas power transferred to the turbine, thus reducing the time required to accelerate the turbocharger group. The effects of these strategies were examined for tip-in maneuvers at a fixed engine speed. Depending on the engine speed and the applied turbolag reduction strategy, turbolag reductions from 70% to 10% were achieved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号