首页 | 本学科首页   官方微博 | 高级检索  
     

基于主成分分析(PCA)和支持向量机(SVM)的耙吸挖泥船工况分析
引用本文:潘志伟,俞孟蕻,苏 贞. 基于主成分分析(PCA)和支持向量机(SVM)的耙吸挖泥船工况分析[J]. 水运工程, 2019, 0(7): 231-236
作者姓名:潘志伟  俞孟蕻  苏 贞
作者单位:江苏科技大学 电子信息学院,江苏 镇江 212003,江苏科技大学 电子信息学院,江苏 镇江 212003,江苏科技大学 电子信息学院,江苏 镇江 212003
摘    要:土质信息对于耙吸挖泥船的挖掘与装舱过程的控制策略具有重要意义,但耙吸挖泥船的耙头无法直接感知土质信息。基于实船数据,通过主成分分析(PCA)对非线性耦合的疏浚数据进行线性可视化和特征分析,对土质信息与工况信息的关联性进行研究。采用支持向量机(SVM)构建分类器,对土质工况进行分类识别。结果表明,该方法能够有效识别不同的土质工况,实现了土质信息的间接感知。

关 键 词:耙吸挖泥船;工况识别;主成分分析(PCA);支持向量机(SVM)

Analysis on working condition of suction hopper dredger based on PCA and SVM
PAN Zhi-wei,YU Meng-hong and SU Zhen. Analysis on working condition of suction hopper dredger based on PCA and SVM[J]. Port & Waterway Engineering, 2019, 0(7): 231-236
Authors:PAN Zhi-wei  YU Meng-hong  SU Zhen
Affiliation:School of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China,School of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China and School of Electronic and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China
Abstract:The soil information is great significance to the control strategy of the excavation and loading process of the suction hopper dredger,but the suction hopper dredger cannot directly sense the soil information.We conduct linear visualization and feature analysis of nonlinear coupled dredging data based on real ship data through principal component analysis(PCA),and study the correlation between soil information and working condition information.The support vector machine (SVM) is used to construct the classifier to classify and identify the soil conditions.The results show that the method can effectively identify different working conditions,and realizes the indirect perception of soil information.
Keywords:suction hopper dredger  working condition identification  principal component analysis(PCA)  support vector machines(SVM)
点击此处可从《水运工程》浏览原始摘要信息
点击此处可从《水运工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号