首页 | 本学科首页   官方微博 | 高级检索  
     

基于GARCH的短时风速预测方法
作者姓名:姜言  黄国庆  彭新艳  李永乐
作者单位:西南交通大学土木工程学院
基金项目:青年千人计划项目高铁联合基金资助项目(U1334201);四川省应用基础研究计划资助项目(2015JY0060)
摘    要:为提高高速列车运行的安全性,基于线性递归的差分自回归移动平均模型(auto-regressive integrated moving average, ARIMA)和非线性递归的广义自回归条件异方差模型(generalized auto-regressive conditionally heteroscedastic, GARCH),提出一种组合模型ARIMA-GARCH进行高速铁路强风风速的短时预测.首先对数据的非平稳性进行预处理,以降低数据非平稳性对所提模型的影响;其次建立线性递归的ARIMA模型对数据进行分析和预测;最后,引入非线性递归的GARCH模型对数据进行分析和预测.基于现场测量的样本仿真分析表明:相比原始数据,ARIMA-GARCH模型的预测精度较高且随着预测步长的增加,平均绝对误差仅从0.836 m/s增加到1.272 m/s;ARIMA-GARCH模型考虑了异方差这一非线性特性,其预测精度明显好于线性的ARIMA模型,其中超前6步预测的平均绝对误差精度提高11.54%. 

关 键 词:高速列车   风速预测   ARIMA模型   非线性   GARCH模型
收稿时间:2015-06-24
本文献已被 CNKI 等数据库收录!
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号