An experimental testbed for mobile offshore base control concepts |
| |
Authors: | Anouck R. Girard Daniel M. Empey William C. Webster J. Karl Hedrick |
| |
Affiliation: | (1) Ocean Engineering Graduate Group, The University of California at Berkeley, 230 Bechtel Engineering Center #1708, Berkeley, CA 94720-1708, USA, US |
| |
Abstract: | The concept of a mobile offshore base (MOB) reflects the need to stage and support military and humanitarian operations anywhere in the world. A MOB is a self-propelled, modular, floating platform that can be assembled into lengths of up to 2 km, as required, to provide logistic support to US military operations where fixed bases are not available or adequate. It accommodates the take-off and landing of C17 aircraft, and can be used for storage, as well as to send resources quickly to shore. In most concepts, the structure is made of three to five modules, which have to perform long-term station-keeping in the presence of winds, waves, and currents. This is usually referred to as dynamic positioning (DP). In the MOB, the alignment is maintained through the use of thrusters, connectors, or a combination of both. In this paper, we consider the real-time control of scaled models of a MOB. The modules are built at the 1 : 150 scale, and are kept aligned by rotating thrusters under a hierarchical hybrid control scheme. This paper describes a physical testbed developed at the University of California, Berkeley, under a grant from the US Office of Naval Research, for the purpose of evaluating competing MOB control concepts. Received: June 4, 2002 / Accepted: October 30, 2002 Acknowledgments. This material is based on work supported by the MOB Program of the US Office of Naval Research under grant N00014-98-1-0744. The authors would like to thank the Link Foundation for its support. Many thanks go to Stephen Spry for his experimental work. The photographs are courtesy of Bill Stone, Gerald Stone, and Jay Sullivan of the PATH Publications staff. Address correspondence to: A.R. Girard (e-mail: anouck@eecs.berkeley.edu) |
| |
Keywords: | Dynamic positioning Mobile offshore base Experimental validation Real-time control system |
本文献已被 SpringerLink 等数据库收录! |
|