首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation methods supporting homologation of Electronic Stability Control in vehicle variants
Authors:Albert Lutz  Bernhard Schick  Henning Holzmann  Michael Kochem  Harald Meyer-Tuve  Olav Lange
Institution:1. Robert Bosch GmbH, Abstatt, Germanyalbert.lutz@de.bosch.com;3. University of Applied Science Kempten, Kempten, Germany;4. Adam Opel AG, Rüsselsheim/M, Germany;5. MAN Truck&6. Bus AG, München, Germany;7. Ford-Werke GmbH, K?ln, Germany
Abstract:ABSTRACT

Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

Abbreviations: ABS: Anti-lock braking system; ADR: Australian design rules; ALB: Automatic load-dependent brake force controller; AMEVSC: Alternative method to assess the electronic vehicle stability control system; APP: Application; BSC: Brake slip controller; CAE: Computer-aided engineering; CAN: Controller area network; CAT: Category; CoG: Centre of gravity; DIN: Deutsches Institut für Normung (German Institute for Standards); EB+: Trademark of Haldex; EBD: Electronic brake force distribution; EBS: Electronic brake system; ECU: Electronic control unit; ESC: Electronic stability control; ECVWTA: European Community Whole Vehicle Type Approval; FMVSS: Federal motor vehicle safety standards; GPS: Global positioning system; GRRF: Groupe de travail en matiere de roulement et de freinage (Working Party on Braking and Running Gear); HiL: Hardware-in-the-Loop; HSRI: Highway Safety Research Institute; K&C: Kinematic and compliant (KnC); MBS: Multibody systems; MPV: Multipurpose vehicle; NHTSA: National Highway Traffic Safety Administration; OEM: Original equipment manufacturer; SiL: Software-in-the-Loop; ST: Summer tyres; STM: Single track model; StVO: Straßenverkehrsordnung (Government Highway Regulations); SUV: Sports utility vehicle; SW: Software; SwD: Sine with dwell manoeuvre; TC: Threshold consumption value; TCS: Traction control system; TRIAS: Test Requirements and Instructions for Automobile Standards; UN/ECE: United Nations Economic Commission for Europe; VAF: Value-added function; VDC: Vehicle dynamics controller; VTC: Vehicle test catalogue; WT: Winter tyres
Keywords:Homologation  ESC  Electronic Stability Control  vehicle dynamics  simulation  FMVSS126  UN/ECE-R 13  sine with dwell
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号