首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于独立成分分析和径向基神经网络的人脸识别新方法
引用本文:范燕,祁云嵩,宋晓宁. 一种基于独立成分分析和径向基神经网络的人脸识别新方法[J]. 江苏科技大学学报(社会科学版), 2006, 20(4): 46-50
作者姓名:范燕  祁云嵩  宋晓宁
作者单位:江苏科技大学,电子信息学院,江苏,镇江,212003;江苏科技大学,电子信息学院,江苏,镇江,212003;江苏科技大学,电子信息学院,江苏,镇江,212003
摘    要:提出了一种新的基于独立成分分析和径向基神经网络的人脸识别方法。独立成分分析可以从高阶上消除特征数据的相关性,改进了主成分分析方法只能从2阶上消除数据相关性的弱点;最终特征数据的分类由RBF神经网络来实现。在人脸数据库上的实验结果表明该新方法的识别性能较其他方法有了很大提高。

关 键 词:人脸识别  特征提取  独立成分分析  主成分分析  径向基神经网络
文章编号:1673-4807(2006)04-0046-05
收稿时间:2005-05-17
修稿时间:2005-05-17

A New Method of Face Recognition Based on Independent Component Analysis and Neural Network with Radial Basic Function
FAN Yan,QI Yunsong,SONG Xiaoning. A New Method of Face Recognition Based on Independent Component Analysis and Neural Network with Radial Basic Function[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2006, 20(4): 46-50
Authors:FAN Yan  QI Yunsong  SONG Xiaoning
Affiliation:School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 212003, China
Abstract:A new method of face recognition based on the independent component analysis and the neural network with radial basic Function is proposed.The independent component analysis can eliminate the data correlation of a higher order while the principal component analysis can only eliminate the data correlation of the second order.The original samples after feature extraction are classified by neural network with radial basic function.Experimental results on the face database demonstrate the efficiency of the new algorithm.
Keywords:face recognition  feature extraction  independent component analysis  principal component analysis  neural network with radial basic function  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号