首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的小时间粒度交通流预测模型
引用本文:姚志洪,蒋阳升,韩鹏,罗孝羚 徐韬. 基于神经网络的小时间粒度交通流预测模型[J]. 交通运输系统工程与信息, 2017, 17(1): 67-73
作者姓名:姚志洪  蒋阳升  韩鹏  罗孝羚 徐韬
作者单位:1. 西南交通大学a. 交通运输与物流学院;b. 综合交通运输智能化国家地方联合工程实验室,成都610031; 2. 重庆交通大学交通运输学院,重庆400074
基金项目:国家自然科学基金/ National Natural Science of China(51578465,71402149);西南交通大学拔尖创新人才培育/ Outstanding Innovative Talents Fostering Fund of Southwest Jiaotong University(2016-2017).
摘    要:
为解决传统车队离散模型基于概率分布假设和现有交通流预测时间粒度过大不能应用于自适应信号配时优化等问题.在车队离散模型的建模思路上,先分析了下游交叉口车辆到达与上游交叉口车辆离去之间的关系,基于此构建了基于神经网络的小时间粒度交通流预测模型.该模型以上游交叉口离去流量分布为输入,下游交叉口到达流量分布为输出,时间粒度为5 s.最后,通过实际调查数据标定模型参数并应用模型预测下游交叉口到达流量.结果表明,与Robertson模型相比,本文模型预测结果能够更好地反映交通流的变化特征,平均预测误差减少了8.3%.成果可用于信号配时优化.

关 键 词:交通工程  交通流预测  神经网络  车队离散  信号配时优化  
收稿时间:2016-07-06

Traffic Flow Prediction Model Based on Neural Network in Small Time Granularity
YAO Zhi-hong,JIANG Yang-sheng,HAN Peng,LUO Xiao-ling,XU Tao. Traffic Flow Prediction Model Based on Neural Network in Small Time Granularity[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 67-73
Authors:YAO Zhi-hong  JIANG Yang-sheng  HAN Peng  LUO Xiao-ling  XU Tao
Affiliation:1.a. School of Transportation and Logistics;1.b. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610031, China; 2. School of Transportation, Chongqing Jiaotong University, Chongqing 400074, China
Abstract:
The traditional platoon dispersion model is based on the hypothesis of probability distribution, and the time granularity of the existing traffic flow prediction is too big to be applied to the adaptive signal timing optimization. In order to solve these problems, from the view of the platoon dispersion model, the relationship between vehicle arrival at the downstream intersection and vehicle departure from the upstream intersection is analyzed, then, a traffic flow prediction model based on neural network in small time granularity is proposed. The departure flow at the upstream is taking as the input and the arrival flow at the downstream intersection is taking as the output in this model, which has the time granularity of 5 s. Finally, the proposed model parameters are calibrated by the actual survey data, and this model is applied to predict the arrival flow of the downstream intersection. The results show that the proposed model can better reflects the fluctuant characteristics of traffic flow compared with Robertson model, and the prediction error is reduced by 8.3%. As a result, this result provides theoretical support for signal timing optimization.
Keywords:traffic engineering  traffic flow prediction  neural network  platoon dispersion  signal timing optimization  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号