首页 | 本学科首页   官方微博 | 高级检索  
     

基于梯度推进决策树的日维度交通指数预测模型
引用本文:翁剑成,付宇,林鹏飞,王晶晶,毛力增,李东岳. 基于梯度推进决策树的日维度交通指数预测模型[J]. 交通运输系统工程与信息, 2019, 19(2): 80-85
作者姓名:翁剑成  付宇  林鹏飞  王晶晶  毛力增  李东岳
作者单位:1. 北京工业大学 交通工程北京市重点实验室,北京 100124;2. 北京市交通运行监测调度中心,北京 100161; 3. 综合交通运行监测与服务北京市重点实验室,北京 100161
基金项目:国家自然科学基金/ National Natural Science Foundation of China(51578028);北京市“科技新星”计划项目/ “Beijing Nova”Program by Beijing Municipal Science and Technology Commission(Z171100001117100).
摘    要:城市交通运行监测和预测是掌握交通运行变化特点,制定缓解交通拥堵策略的重要工作,其结果能为公众提供有效的路况信息,亦为政策措施的制定和效果评估提供重要支撑.有别于传统的短时交通预测,本文提出的预测模型不是针对相邻时段的运行状态预测,而是更长跨度上,针对日级别高峰时段交通运行状态的预测.构建了包含时间周期、特殊天气、节假日、限行、大型活动等因素的多维度影响因素集;以长期历史交通指数构建数据训练集,提出了基于梯度推进决策树的日维度路网状况预测模型.应用最优模型进行验证,结果表明,模型预测精度可达 90%以上,与其他 4种回归模型的对比分析也显示,本文所提出的模型在各项评分中均表现最优,说明其更适合于大样本、多因素的回归分析.本文所提出的日维度预测模型对提升城市路网运行质量、缓解交通拥堵具有重要的应用价值.

关 键 词:城市交通  日维度指数预测  梯度提升决策树  路网交通指数  精度验证  
收稿时间:2018-09-30

GBDT Method Based on Prediction Model of Daily Dimension Traffic Index
WENG Jian-cheng,FU Yu,LIN Peng-fei,WANG Jing-jing,MAO Li-zeng,LI Dong-yue. GBDT Method Based on Prediction Model of Daily Dimension Traffic Index[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 80-85
Authors:WENG Jian-cheng  FU Yu  LIN Peng-fei  WANG Jing-jing  MAO Li-zeng  LI Dong-yue
Affiliation:1. The Key Laboratory of Transportation Engineering, Beijing University of Technology, Beijing 100124, China; 2. Beijing Municipal Transportation Operations Coordination Center, Beijing 100161, China; 3. Beijing Key Laboratory of Integrated Traffic Operation Monitoring and Service, Beijing 100161, China
Abstract:Monitoring and forecasting of urban traffic operation is an important task to grasp the characteristics of traffic operation changes and formulate strategies to alleviate traffic congestion. The forecasting results can provide effective road information for the public, and also provide support for the formulation of policy measures and the evaluation of the effect. Different from the traditional short-term traffic forecasting, the forecasting model proposed in this paper is not for the operation state prediction of adjacent periods, but for the long-span, for the daily traffic operation state prediction. This paper constructs a multidimensional factors set including time period, weather, holidays, vehicle restriction, large events and so on; builds a data training set based on long- term historical traffic index, and proposes a daily road network condition prediction model based on gradient boosting decision tree; validates the model by using the optimal model. The results show that the prediction accuracy of the model can reach more than 90% . The comparative analysis of the regression model also shows that the model presented in this paper performs best in all scoring items, indicating that it is more suitable for regression analysis with large samples and multiple factors. The daily prediction model proposed in this paper has important application value in improving the quality of urban road network operation and alleviating traffic congestion.
Keywords:urban traffic  medium-term index prediction  gradient boosting decision tree  traffic index  accuracy verification  
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号