首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高速磁悬浮轨道交通研究进展
引用本文:熊嘉阳,邓自刚.高速磁悬浮轨道交通研究进展[J].交通运输工程学报,2021,21(1):177-198.
作者姓名:熊嘉阳  邓自刚
作者单位:1.西南交通大学 牵引动力国家重点实验室,四川 成都 6100312.西南交通大学 机械工程学院,四川 成都 610031
基金项目:国家自然科学基金项目U19A20102
摘    要:从磁悬浮轨道交通的基本原理、磁悬浮列车的技术特点等角度出发,简述了世界各国高速磁悬浮轨道交通的发展概况,对比了常导电磁悬浮、永磁电动磁悬浮、低温超导电动磁悬浮和高温超导磁悬浮等4种磁悬浮方式的研究历史、悬浮特点、悬浮间隙、悬浮能耗、控制系统、技术成熟度与应用情况;采用文献调研、比对、分析、提炼等方法,综述了国内外高校、研究机构和企业对于高速磁悬浮的研究进展;比较了各类磁悬浮轨道交通的原理、技术优势和劣势,分析了高速磁悬浮轨道交通在应用方面的可行性与不足,探讨了4种磁悬浮方式的技术经济性和应用前景与场景;提出了当前发展高速及超高速真空管道磁悬浮轨道交通亟待解决的牵引制动控制、动力和热力学、安全救援、管道密封性能与抽真空效率、无线通信、车内环境控制等6个关键科学问题,并介绍了中国原创高温超导磁悬浮的基础研究及关键技术研发进展与研发计划。研究结果表明:在400~600 km·h-1速度范围可采用常导电磁悬浮或超导磁悬浮技术;在600~1 000 km·h-1速度范围可采用超导磁悬浮技术;1 000 km·h-1及以上的速度可采用高温超导磁悬浮与真空管道或电动磁悬浮与真空管道的磁悬浮技术;作为一种前瞻性研究,高温超导与真空管道磁悬浮关键技术的突破和验证对推动中国乃至世界轨道交通快速发展具有重大而深远的意义。 

关 键 词:轨道交通    高速磁悬浮    磁悬浮列车    关键技术    高温超导    真空管道    研究进展
收稿时间:2020-09-15

Research progress of high-speed maglev rail transit
XIONG Jia-yang,DENG Zi-gang.Research progress of high-speed maglev rail transit[J].Journal of Traffic and Transportation Engineering,2021,21(1):177-198.
Authors:XIONG Jia-yang  DENG Zi-gang
Institution:1.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China2.School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:The development of high-speed maglev rail transit across the world was summarized based on the basic operating principles and technical characteristics of maglev trains. The electromagnetic suspension (EMS), permanent magnet electrodynamic suspension (PMEDS), low-temperature superconductor electrodynamic suspension (LTSEDS), and high-temperature superconducting magnetic levitation (HTS maglev) were compared in terms of their research histories, suspension characteristics, suspension gaps, suspension energy-consumption levels, control systems, technical maturity, and state of use. The progress of research on high-speed maglev in domestic and foreign universities, research institutions, and enterprises was summarized based on the literature research, comparison, analysis and refinement. The principles, technical strengths and weaknesses of various maglev rail transits were compared to analyze the viability and inadequacies of high-speed maglev rail transit in practical applications. The technical economy, application prospects and scenarios of four maglev modes were discussed. Six key scientific problems for the development of high-speed and ultra-high-speed vacuum-tube maglev rail transit were identified. These include the traction/braking control, kinetics and thermodynamics, safety and rescue protocol, sealing performance and vacuum pumping efficiency of tube, wireless communication, and interior environment control. The progress and plan of research and development in basic research and key technologies for HTS maglev originated in China were also described. Research results shows that the EMS or superconducting maglev technology is suitable for speeds between 400 km·h-1 and 600 km·h-1. The superconducting maglev technology can be used for speeds between 600 km·h-1 and 1 000 km·h-1. Speeds of 1 000 km·h-1 or greater require the maglev technologies of HTS maglev or EDS with vacuum-tube. As a prospective study, the technological breakthrough and validation in HTS with vacuum-tube maglev have profound and far-reaching implications on the rapid development of rail transit in China and even the world. 2 tabs, 15 figs, 72 refs. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号