首页 | 本学科首页   官方微博 | 高级检索  
     

基于优化PSO-BP算法的耦合时空特征下地铁客流预测
引用本文:惠阳, 王永岗, 彭辉, 侯淑倩. 基于优化PSO-BP算法的耦合时空特征下地铁客流预测[J]. 交通运输工程学报, 2021, 21(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2021.04.016
作者姓名:惠阳  王永岗  彭辉  侯淑倩
作者单位:1.长安大学 生态安全屏障区交通网设施管控及循环修复技术交通运输行业重点实验室,陕西 西安 710064;2.长安大学 交通软科学研究中心,陕西 西安 710064;3.西安市轨道交通集团有限公司,陕西 西安 710018
基金项目:国家自然科学基金项目52072044陕西省自然科学基金项目2021JQ-295
摘    要:
为提高地铁客流预测的准确性,以西安地铁1号线为例,分析了地铁客流的耦合时空特征,提取了影响地铁客流变化的5个主要因素,包括节日、非节日、时间段、站点和天气,构建了反向传播(BP)神经网络,预测了地铁客流;利用引入自适应变异与均衡惯性权重的粒子群优化(PSO)算法,优化了BP神经网络,形成了考虑复杂因素影响的地铁客流预测系统;选取了换乘站、非换乘站的首站与中间站,引入天气、节日、非节日因素,对比了不同时间段下的BP神经网络模型,优化了PSO-BP神经网络模型的预测误差。研究结果表明:考虑天气、节日、非节日因素,换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了40.13%、31.46%和23.89%,较分时段的BP神经网络模型分别平均下降了17.50%、17.86%和17.32%;非换乘站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差和平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了16.50%、20.99%和32.59%,较分时段的BP神经网络模型分别平均下降了11.48%、12.10%和17.73%;各站点分时段优化PSO-BP神经网络模型预测的平均绝对误差、均方根误差、平均绝对百分比误差,较不分时段的优化PSO-BP神经网络模型分别平均下降了24.37%、24.48%和29.69%,较分时段的BP神经网络模型分别平均下降了13.49%、14.02%和17.59%,因此,利用考虑多影响因素的优化PSO-BP神经网络模型能提高地铁客流预测的准确性。

关 键 词:城市轨道交通   客流预测   耦合时空特征   反向传播神经网络   粒子群优化算法   自适应变异   惯性权重
收稿时间:2021-03-26

Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics
HUI Yang, WANG Yong-gang, PENG Hui, HOU Shu-qian. Subway passenger flow prediction based on optimized PSO-BP algorithm with coupled spatial-temporal characteristics[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 210-222. doi: 10.19818/j.cnki.1671-1637.2021.04.016
Authors:HUI Yang  WANG Yong-gang  PENG Hui  HOU Shu-qian
Affiliation:1. Key Laboratory of Transport Industry of Management, Control and Cycle Repair Technology for Traffic Network Facilities in Ecological Security Barrier Area, Chang'an University, Xi'an 710064, Shaanxi, China;2. Transportation Soft Science Research Center, Chang'an University, Xi'an 710064, Shaanxi, China;3. Xi'an Rail Transit Group Company Limited, Xi'an 710018, Shaanxi, China
Abstract:
To improve the accuracy of subway passenger flow prediction, by considering the Xi'an Metro Line 1 as an example, five main factors affecting subway passenger flow variations, such as festival, non-festival, time period, station, and weather, were extracted to analyze the coupled spatial-temporal characteristics of subway passenger flow. A back propagation (BP) neural network was constructed to predict the subway passenger flow. The proposed BP neural network was further optimized by using a particle swarm optimization (PSO) algorithm that introduced adaptive mutation and balanced inertia weights to form a subway passenger flow prediction system that could consider complex influence factors. Transfer stations and non-transfer stations including a first and an intermediate station were selected, the weather, festival, and non-festival factors were considered, and the BP neural network models for different time periods were compared. Then, the prediction errors of the PSO-BP neural network model were optimized. Research results show that by considering the weather, festival and non-festival factors, the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) of the optimized PSO-BP neural network model predictions at transfer stations within the optimized time periods decrease by 40.13%, 31.46% and 23.89%, respectively, compared with the optimized PSO-BP neural network models prediction errors without the time periods, decrease by 17.50%, 17.86% and 17.32% compared with the BP neural network models prediction errors within the optimized time periods. The MAE, RMSE, and MAPE of the optimized PSO-BP neural network model predictions in the non-transfer stations within the optimized time periods decrease by 16.50%, 20.99% and 32.59%, respectively, compared with the optimized PSO-BP neural network model prediction errors without time periods, and decrease by 11.48%, 12.10% and 17.73%, respectively, compared with the BP neural network model prediction errors within the optimized time periods. The MAE, RMSE, and MAPE of the optimized PSO-BP neural network model predictions at each station within the optimized time periods decrease by 24.37%, 24.48% and 29.69%, respectively, compared with the optimized PSO-BP neural network model prediction errors without time periods, and decrease by 13.49%, 14.02% and 17.59%, respectively, compared with the BP neural network model prediction errors within the given time periods. Therefore, using the optimized PSO-BP neural network model and considering the influencing factors can improve the accuracy of subway passenger flow prediction. 8 tabs, 12 figs, 30 refs. 
Keywords:urban rail transit  passenger flow prediction  coupled spatial-temporal characteristic  back propagation neural network  particle swarm optimization algorithm  adaptive mutation  inertia weight
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号