面向在线地图的GCN-LSTM神经网络速度预测 |
| |
引用本文: | 陈华伟, 邵毅明, 敖谷昌, 张惠玲. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014 |
| |
作者姓名: | 陈华伟 邵毅明 敖谷昌 张惠玲 |
| |
作者单位: | 1.重庆交通大学 交通运输学院,重庆 400074;;2.重庆交通大学 山地城市交通系统与安全重庆市重点实验室,重庆 400074 |
| |
基金项目: | 国家自然科学基金项目51508061重庆市自然科学基金项目cstc2019jcyj-msxmX0786 |
| |
摘 要: |  为从路网速度中完整提取路段速度的时空特征,实现高精度路段速度预测,通过调用在线地图的路径规划应用程序接口,采集路段的在线地图速度;利用图卷积神经网络(GCN)提取空间特征,利用长短期记忆(LSTM)神经网络提取时间特征,建立面向在线地图的GCN-LSTM神经网络,提取路段速度的时空特征,预测路段速度;为测试面向在线地图的GCN-LSTM神经网络表现,并评价在线地图下GCN-LSTM神经网络的优势与面向检测器速度预测模型的可替代性,以局部路网为例分析模型表现,并对比在线地图下不同模型的表现与不同数据源下近似模型的表现。 研究结果表明:GCN-LSTM神经网络在训练集和测试集上的平均绝对误差(MAE)均低于5,均方根误差(RMSE)均低于6,平均绝对百分比误差(MAPE)均低于30%,训练误差和测试误差均处于较低水平,总体表现良好;GCN-LSTM神经网络的路段MAPE服从Gumbel分布,均值均落在19%±4%之间,85%分位点均落在34%±5%之间,2项指标均处于较低水平,个体表现良好;在面向在线地图的速度预测模型中,GCN-LSTM神经网络的MAE、RMSE、MAPE以及MAPE拟合曲线均值、85%分位点最低,总体和个体表现均为最佳,在面向在线地图的速度预测中具有一定优势;在近似模型中,GCN-LSTM神经网络的MAE、RMSE、MAPE以及MAPE拟合曲线均值、85%分位点最低,总体和个体表现均为最佳,则面向在线地图速度预测的可靠性高,可代替面向检测器的速度预测。

|
关 键 词: | 交通工程 速度预测 GCN-LSTM神经网络 在线地图速度 深度学习 时空特征 |
收稿时间: | 2021-02-19 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《交通运输工程学报》浏览原始摘要信息 |
|
点击此处可从《交通运输工程学报》下载免费的PDF全文 |
|