首页 | 本学科首页   官方微博 | 高级检索  
     

面向在线地图的GCN-LSTM神经网络速度预测
引用本文:陈华伟, 邵毅明, 敖谷昌, 张惠玲. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014
作者姓名:陈华伟  邵毅明  敖谷昌  张惠玲
作者单位:1.重庆交通大学 交通运输学院,重庆 400074;;2.重庆交通大学 山地城市交通系统与安全重庆市重点实验室,重庆 400074
基金项目:国家自然科学基金项目51508061重庆市自然科学基金项目cstc2019jcyj-msxmX0786
摘    要:
为从路网速度中完整提取路段速度的时空特征,实现高精度路段速度预测,通过调用在线地图的路径规划应用程序接口,采集路段的在线地图速度;利用图卷积神经网络(GCN)提取空间特征,利用长短期记忆(LSTM)神经网络提取时间特征,建立面向在线地图的GCN-LSTM神经网络,提取路段速度的时空特征,预测路段速度;为测试面向在线地图的GCN-LSTM神经网络表现,并评价在线地图下GCN-LSTM神经网络的优势与面向检测器速度预测模型的可替代性,以局部路网为例分析模型表现,并对比在线地图下不同模型的表现与不同数据源下近似模型的表现。研究结果表明:GCN-LSTM神经网络在训练集和测试集上的平均绝对误差(MAE)均低于5,均方根误差(RMSE)均低于6,平均绝对百分比误差(MAPE)均低于30%,训练误差和测试误差均处于较低水平,总体表现良好;GCN-LSTM神经网络的路段MAPE服从Gumbel分布,均值均落在19%±4%之间,85%分位点均落在34%±5%之间,2项指标均处于较低水平,个体表现良好;在面向在线地图的速度预测模型中,GCN-LSTM神经网络的MAE、RMSE、MAPE以及MAPE拟合曲线均值、85%分位点最低,总体和个体表现均为最佳,在面向在线地图的速度预测中具有一定优势;在近似模型中,GCN-LSTM神经网络的MAE、RMSE、MAPE以及MAPE拟合曲线均值、85%分位点最低,总体和个体表现均为最佳,则面向在线地图速度预测的可靠性高,可代替面向检测器的速度预测。

关 键 词:交通工程   速度预测   GCN-LSTM神经网络   在线地图速度   深度学习   时空特征
收稿时间:2021-02-19

Speed prediction by online map-based GCN-LSTM neural network
CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, ZHANG Hui-ling. Speed prediction by online map-based GCN-LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014
Authors:CHEN Hua-wei  SHAO Yi-ming  AO Gu-chang  ZHANG Hui-ling
Affiliation:1. School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China;;2. Chongqing Key Lab of Traffic System and Safety in Mountain Cities, Chongqing Jiaotong University, Chongqing 400074, China
Abstract:
Online map speeds of roads were collected by calling the path-planning application programming interface of the online map to completely extract the spatio-temporal features of the road speed from road network speed and then achieve high-precision road speed prediction. The spatial features were extracted using a graph convolutional network (GCN), and the temporal features were extracted using a long short-term memory (LSTM) neural network. An online map-based GCN-LSTM neural network was established, the spatio-temporal features of the road speed were extracted, and the road speed was predicted. The performance of the online map-based GCN-LSTM neural network was assessed, and the advantages of the online map-based GCN-LSTM neural network and the substitutability of the detector-based speed prediction model were evaluated. By using the local road network as an example, the performance of the model was analyzed, and the performances of different online map-based models and similar models with different data sources were compared. Analysis results show that the mean absolute errors(MAEs) of the GCN-LSTM neural network are lower than 5, the root mean square errors (RMSEs) are lower than 6, and the mean absolute percentage errors (MAPEs) are lower than 30% in the training and testing sets. Hence, the training and testing errors are low, indicating good comprehensive performance. The MAPE of the GCN-LSTM neural network of the roads follows a Gumbel distribution, whose mean ranges between 19%±4%, and the 85% quantile ranges between 34%±5%. Hence, both indexes are low, indicating good individual performance. Among the online map-based speed prediction models, the MAE, RMSE, MAPE, mean, and 85% quantile of the MAPE fitting curve of the GCN-LSTM neural network have the lowest values. Hence, its comprehensive and individual performances are the best, and it exhibits advantages in online map-based speed prediction. Among the similar models, the MAE, RMSE, MAPE, mean, and 85% quantile of the MAPE fitting curve of the GCN-LSTM neural network have the lowest values. Hence, its comprehensive and individual performances are the best. Furthermore, the reliability of online map-based speed prediction is high, so that it can be used as a substitute for detector-based speed prediction. 4 tabs, 13 figs, 30 refs. 
Keywords:traffic engineering  speed prediction  GCN-LSTM neural network  online map speed  deep learning  spatio-temporal feature
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号