首页 | 本学科首页   官方微博 | 高级检索  
     

基于3D卷积神经网络的高铁轨道质量指数预测方法
作者姓名:赵正阳  吴艳华  程智博  王云龙
作者单位:1.中国铁道科学研究院集团有限公司 电子计算技术研究所,北京 100081
基金项目:中国铁路总公司科技研究开发计划课题(J2018G008)
摘    要:轨道质量指数(TQI,Track Quality Index)是反映高铁整体线路质量状态的重要指标,分析TQI数据的变化规律能够对高铁线路养护维修提供重要指导和参考依据。为提高TQI数据预测的准确性,提出了一种多项特征数据的3D卷积神经网络模型,分析了TQI数据特征,抽取时间、空间、检测项数据并形成三维特征数据集,基于3D卷积神经网络算法,构建8层TQI预测模型,并从初始化参数、学习速率、激活函数、损失函数、Dropout方法等角度对模型进行优化,并利用某高铁线检测数据进行试验验证。结果表明,3D卷积神经网络模型可较好的预测高铁线路状态变化趋势,且对比于BP神经网络和2D卷积神经网络方法,平均绝对误差分别降低了41.48%、26.32%,均方差分别降低了65.42%、39.93%,证明了该方法的准确性与有效性,对于预测TQI与制定高铁线路养护维修计划具有实用价值。

关 键 词:铁路运输   轨道质量指数   深度学习   3D卷积神经网络
收稿时间:2020-07-22
点击此处可从《铁路计算机应用》浏览原始摘要信息
点击此处可从《铁路计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号