首页 | 本学科首页   官方微博 | 高级检索  
     

高速公路场景图像的二值化及交通标志定位检测方法
引用本文:初秀民,严新平,毛喆,章先阵. 高速公路场景图像的二值化及交通标志定位检测方法[J]. 中国公路学报, 2006, 19(6): 102-106
作者姓名:初秀民  严新平  毛喆  章先阵
作者单位:武汉理工大学,智能运输系统研究中心,湖北,武汉,430063
基金项目:国家自然科学基金;高等学校博士学科点专项科研项目
摘    要:采用CCD摄像机采集高速公路场景图像,并通过图像颜色空间变换,将图像的RGB量值转换为色度-饱和度-亮度(HSV)量值。采用基于阈值的方法对场景图像中颜色饱和度分量进行二值化分割处理;利用场景二值化图像形状特征(周长、形状参数、圆形性参数)去除非目标区域,并通过搜索场景二值化图像方向投影值序列的突变点实现标志准确定位。采用HSV颜色模型中的亮度分量和最佳阈值法对场景图像中标志区域进行二值化处理。结果表明,应用上述方法能取得良好的效果。

关 键 词:交通工程  交通标志  阈值法  图像分割  二值化  定位
文章编号:1001-7372(2006)06-0102-05
收稿时间:2006-03-01
修稿时间:2006-03-01

Traffic Sign Positioning Detection Method and Binarization in Freeway Scene Image
CHU Xiu-min,YAN Xin-ping,MAO Zhe,ZHANG Xian-zhen. Traffic Sign Positioning Detection Method and Binarization in Freeway Scene Image[J]. China Journal of Highway and Transport, 2006, 19(6): 102-106
Authors:CHU Xiu-min  YAN Xin-ping  MAO Zhe  ZHANG Xian-zhen
Affiliation:ITS Research Center, Wuhan University of Technology, Wuhan 430063, Hubei, China
Abstract:The CCD camera was used to shot the freeway scene images, and the HSV color space values were converted from RGB values through image color space transformation. Sub-variable S in freeway scene image binarization segmentation was processed based on the threshold value algorithm, and the shape features of the freeway scene binarization image, such as boundary length, form factor, circularity, were used to wiped off the non-target areas. By searching the catastrophe point of direction projection values sequence of freeway scene binarization image, the traffic sign region position was located correctly. Sub-variable V in HSV color model and the optimal threshold value algorithm were used to process sign area binarization in freeway scene image. Results show that this method is right.
Keywords:traffic engineering   traffic sign   threshold value algorithm   image segmentation   binarization   positioning
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号