首页 | 本学科首页   官方微博 | 高级检索  
     检索      

超高压共轨系统轨压控制策略研究
引用本文:周磊,杨昆,刘振明,王鑫.超高压共轨系统轨压控制策略研究[J].车用发动机,2017(2).
作者姓名:周磊  杨昆  刘振明  王鑫
作者单位:1. 海军工程大学动力工程学院,湖北 武汉,430033;2. 海洋环境保障基地筹建办公室,北京,100086
基金项目:国家自然科学基金,"十三五"国防预研项目,海军工程大学博士研究生创新基金
摘    要:为稳定控制超高压共轨系统中的共轨腔压力并缩短轨压控制算法的开发周期,利用AMESim/Simulink联合仿真技术建立了超高压共轨系统轨压控制仿真模型,采取前馈+PID控制算法设计了轨压控制策略,并针对轨压控制中的瞬态和稳态工况进行了仿真计算,最后在试验台架上开展了轨压跟随性测试。结果表明:所制定的前馈+PID控制算法能使轨压稳定在目标轨压附近,上下波动小于3 MPa,且轨压突变时瞬态响应时间小于0.5s,控制结果能够满足超高压共轨系统对精度和速度的需求。

关 键 词:超高压共轨系统  轨压控制  仿真

Rail Pressure Control Strategy for Ultra-High Pressure Common Rail System
ZHOU Lei,YANG Kun,LIU Zhenming,WANG Xin.Rail Pressure Control Strategy for Ultra-High Pressure Common Rail System[J].Vehicle Engine,2017(2).
Authors:ZHOU Lei  YANG Kun  LIU Zhenming  WANG Xin
Abstract:In order to control the common rail pressure of the ultra-high pressure common rail system and shorten the development period of the rail pressure control algorithm, the rail pressure control simulation model of ultra-high pressure common rail system was established by using the AMESim/Simulink simulation technology, the rail pressure control strategy was designed with the feed-forward and PID control algorithm, the simulation calculation was carried out for the transient and steady working condition of rail pressure control, and finally the rail pressure tracing test was conducted in the test bench.The results show that the feed-forward and PID control algorithm can make the rail pressure fluctuate less than 3 MPa near the target rail pressure.Besides, the transient response time is less than 0.5 s.Accordingly, the control results can meet the precision and speed requirements of the ultra-high pressure common rail system.
Keywords:ultra-high pressure common rail system  rail pressure control  simulation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号