车牌定位及车辆特征识别研究 |
| |
引用本文: | 董浩, 曹从咏, 杨莹. 车牌定位及车辆特征识别研究[J]. 交通信息与安全, 2017, 35(4): 63-68. doi: 10.3963/j.issn.1674-4861.2017.04.008 |
| |
作者姓名: | 董浩 曹从咏 杨莹 |
| |
作者单位: | 南京理工大学自动化学院 南京 210094;;南京理工大学自动化学院 南京 210094;;南京理工大学自动化学院 南京 210094 |
| |
基金项目: | 国家自然科学基金项目江苏省普通高校专业学位研究生创新计划项目 |
| |
摘 要: | 车牌定位及车辆识别是智能交通管理的主要研究问题.车牌定位识别,通过对图像进行预处理并结合形态学能粗略获取候选车牌位置,对符合特征的候选车牌进行筛选,精确获取车牌位置,最后采用神经网络完成字符识别过程.车辆识别采用迁移学习,采用AlexNet卷积神经网络构造出深度特征向量.形态学能够应对灰度底质量差的情形,为字符识别提供保障.车辆识别时对比直接分类图片特征,迁移学习构造的深度特征分类精度为85.13%,提高了38%,验证了迁移学习的有效性,通过KNN算法表明深度特征能够表征图片属性.针对新数据集重新提取特征、训练样本将消耗大量时间,对比迁移学习和AlexNet框架发现分类精度持平,表明了迁移学习的鲁棒性.
|
关 键 词: | 智能交通 形态学 车牌定位 车辆识别 机器学习 深度学习 迁移学习 深度特征 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《交通信息与安全》浏览原始摘要信息 |
|
点击此处可从《交通信息与安全》下载免费的PDF全文 |
|