首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN-LSTM组合模型的铁路枢纽站出租车需求量短时预测研究
作者姓名:徐慧智  杨冰冰
作者单位:东北林业大学交通学院
摘    要:考虑铁路枢纽出租车客流需求量短时波动和历史时间序列等影响因素,为提升铁路枢纽站出租车需求量短时预测精度,提出了一维卷积神经网络(CNN)与长短时记忆神经网络(LSTM)的组合预测模型(CNN-LSTM)。采用人工计数法,获取铁路枢纽站出租车客流需求的时间序列数据,根据供需量平衡理论,建立理想条件下需求量短时计算模型。以标准化原始数据为CNN的输入,分别通过双层卷积和池化,提取原始数据特征向量输入特征,并以此作为LSTM的训练数据进行短时预测,将预测数据标准化还原后可得到匹配原始数据的预测数据。对比分析SARIMA、LSTM预测模型,构建的CNN-LSTM组合模型RMSE值有所降低,表明构建模型适用于铁路枢纽出租车需求量短时预测。

关 键 词:需求量预测  卷积神经网络  长短时记忆神经网络
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号