首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的车用汽油机过渡工况空燃比辨识
引用本文:吴义虎,侯志祥,申群太. 基于神经网络的车用汽油机过渡工况空燃比辨识[J]. 车用发动机, 2007, 0(2): 40-43
作者姓名:吴义虎  侯志祥  申群太
作者单位:1. 长沙理工大学汽车与机械工程学院,湖南,长沙,410076
2. 长沙理工大学汽车与机械工程学院,湖南,长沙,410076;中南大学信息科学与工程学院,湖南,长沙,410083
3. 中南大学信息科学与工程学院,湖南,长沙,410083
摘    要:以HL495Q电喷汽油机为研究对象,提出了一种基于BP神经网络的空燃比辨识方法,比较了不同拓扑结构的神经网络对空燃比辨识精度的影响,得到了一种最优的空燃比模型。试验结果表明,空燃比模型能高精度地逼近空燃比的实际动态过程,模型的平均相对误差小于2%。

关 键 词:汽油机  空燃比  神经网络  辨识  过渡工况
文章编号:1001-2222(2007)02-0040-04
修稿时间:2006-08-24

Air Fuel Ratio Identification of Gasoline Engine during Transient Conditions Based on Neural Networks
WU Yi-hu,HOU Zhi-xiang,SHEN Qun-tai. Air Fuel Ratio Identification of Gasoline Engine during Transient Conditions Based on Neural Networks[J]. Vehicle Engine, 2007, 0(2): 40-43
Authors:WU Yi-hu  HOU Zhi-xiang  SHEN Qun-tai
Affiliation:School of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410076, China; 2. School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract:Air fuel ratio is a key index of affecting power performance and fuel economy and exhaust emissions of the gasoline engine,its accurate model is the foundation of accuracy air fuel ratio control.Using HL495 engine as experiment device,a method of indenting air fuel ratio based on neural network was provided in this paper,and the accuracy of air fuel ratio model was compared with different topology structure of neural network and the best air fuel ratio model was obtained.Experiment results show the model can accurately approximate the air fuel ratio transient process and average relative error is less than 2%.
Keywords:gasoline engine  air fuel ratio  neural networks  identification  transient condition
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号