首页 | 本学科首页   官方微博 | 高级检索  
     

基于涡激振动的动车组隧道内列尾横向晃动机理
引用本文:姚远, 许振飞, 宋亚东, 沈龙江, 李传龙. 基于涡激振动的动车组隧道内列尾横向晃动机理[J]. 交通运输工程学报, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010
作者姓名:姚远  许振飞  宋亚东  沈龙江  李传龙
作者单位:1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031;;2.中车株洲电力机车有限公司,湖南 株洲 412000;;3.中车大连机车车辆有限公司,辽宁 大连 116022
基金项目:国家自然科学基金项目51675443国家自然科学基金项目51735012中国国家铁路集团有限公司科技研究开发计划项目N2021J028中国国家铁路集团有限公司科技研究开发计划项目N2020J026
摘    要:针对时速160 km动车组在单线隧道内列尾横向晃动问题,提出列尾气流涡脱效应引起车体涡激振动而导致列尾横向晃动的机理,研究了车辆悬挂参数改进等相关抑制措施;根据某动力车结构参数,建立车辆横向动力学模型,结合半经验非线性涡激振子模型,实现涡激振动时车辆流固耦合横向动力学计算。计算结果表明:单线隧道内动车组列尾较大的横向涡激力以及涡激频率与车体蛇行频率共振是引起晃车的主要原因;减小横向涡激力、提高车辆蛇行运动稳定性是减小晃车幅值的有效措施;针对该动力车,需避免较低等效锥度的轮轨接触,以防车辆一次蛇行导致涡激振动加剧;当转向架抗蛇行减振器阻尼由800 kN·s·m-1减小到400 kN·s·m-1,涡激共振时车体后端横向振动加速度幅值减小40%;车辆二系横向悬挂采用天棚阻尼半主动控制时,可以有效减小涡激共振区车体横向振动幅值,并能兼顾车体前后端横向平稳性。

关 键 词:动车组   横向动力学   涡激振动   流固耦合   悬挂参数
收稿时间:2021-03-27

Mechanism of train tail lateral sway of EMUs in tunnel based on vortex-induced vibration
YAO Yuan, XU Zhen-fei, SONG Ya-dong, SHEN Long-jiang, LI Chuan-long. Mechanism of train tail lateral sway of EMUs in tunnel based on vortex-induced vibration[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 114-124. doi: 10.19818/j.cnki.1671-1637.2021.05.010
Authors:YAO Yuan  XU Zhen-fei  SONG Ya-dong  SHEN Long-jiang  LI Chuan-long
Affiliation:1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;;2. CRRC Zhuzhou Electric Locomotive Co., Ltd., Zhuzhou 412000, Hunan, China;;3. CRRC Dalian Locomotive and Rolling Stock Co., Ltd., Dalian 116022, Liaoning, China
Abstract:Aiming at the train tail lateral sway of 160 km·h-1 electric multiple units (EMUs), which occurs in single-track tunnels, the mechanism was put forward that the vortex shedding effect of gas flow in the train tail causes the vortex-induced vibration of the car-body and results in the lateral sway of the train tail. Relevant mitigation measures, such as the optimization of vehicle suspension parameters, were studied. Based on the structural parameters of a certain type of locomotive, the vehicle lateral dynamics model was established and combined with the semi-empirical nonlinear vortex-induced vibrator model to enable the fluid-solid coupling lateral dynamics calculation during the vortex-induced vibration. Calculation results show that a large lateral vortex-induced force acting on the train tail of EMUs in a single-track tunnel and the resonance between the vortex-induced frequency and the car-body hunting frequency are the main causes of car-body sway. Reducing the lateral vortex-induced force and improving the vehicle hunting stability are effective measures to reduce the amplitude of the car-body sway. For this type of locomotive, avoiding wheel-rail contact with a lower equivalent conicity is required to prevent aggravation of the vortex-induced vibration by vehicle primary hunting behavior. When the damping of the yaw damper is reduced from 800 kN·s·m-1 to 400 kN·s·m-1, the lateral vibration acceleration amplitude in the rear end of the car-body during vortex-induced resonance is reduced by 40%. When the semi-active control with skyhook damping in the secondary lateral suspension is adopted, the lateral vibration amplitude of the car-body in the vortex-induced resonance zone is effectively reduced. Moreover, the lateral ride comfort at the front and rear ends of the car-body can be guaranteed. 1 tab, 9 figs, 29 refs. 
Keywords:EMUs  lateral dynamics  vortex-induced vibration  fluid-solid coupling  suspension parameters
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号