首页 | 本学科首页   官方微博 | 高级检索  
     

“无人机-车辆”配送路径优化模型与算法
引用本文:柳伍生,李旺,周清,迭纤. “无人机-车辆”配送路径优化模型与算法[J]. 交通运输系统工程与信息, 2021, 21(6): 176-186. DOI: 10.16097/j.cnki.1009-6744.2021.06.020
作者姓名:柳伍生  李旺  周清  迭纤
作者单位:长沙理工大学,交通运输工程学院,长沙 410114
基金项目:国家自然科学基金;湖南省自然科学基金
摘    要:
基于城市配送的发展趋势,提出一种“无人机-车辆”联合配送模型,以无人机为主导,分3步进行路径分配,无人机每次配送可以服务多个顾客点,车辆不用在固定点等待无人机。进行单次路径规划时,让顾客需求点尽可能多的得到服务,最后,以总配送距离最小为目标,对整体路径进行优化。此外,设计了3种不同的配送场景,构建的模型能同时适用于这3种场景。采用带末端优化的模拟退火算法求解问题,结果验证了模型的可行性。考虑到未来无人机技术的进一步提高,对无人机的最大载重量和飞行距离进行灵敏度分析。结果表明,无人机的配送能力受载重量和飞行距离影响,增大配送能力可以使无人机服务更多的顾客需求点,均衡提升载重量和飞行距离可以充分发挥无人机的配送能力,更好地完成农村地区的物流配送。

关 键 词:物流工程  联合配送  模拟退火算法  无人机-车辆  路径优化  
收稿时间:2021-07-19

"Drone-Vehicle"Distribution Routing Optimization Model
LIU Wu-sheng,LI Wang,ZHOU Qing,DIE Qian. "Drone-Vehicle"Distribution Routing Optimization Model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 176-186. DOI: 10.16097/j.cnki.1009-6744.2021.06.020
Authors:LIU Wu-sheng  LI Wang  ZHOU Qing  DIE Qian
Affiliation:School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
Abstract:
In view of the development of logistics distribution, this paper proposes a "drone-vehicle" joint deliverymodel. Drones perform the delivery and the path allocation is divided into three steps for delivery. Every delivery fromdrones can serve multiple customer points, and vehicles do not have to wait for the drone at fixed points. During singleroute planning, the customer demand points can be served as many as possible. The overall route is optimized with thegoal of minimizing the total delivery distance. Three different delivery scenarios are designed. The model can beapplied to the three scenarios at the same time. The simulated annealing algorithm with end optimization is used tosolve the problem, and the results indicate the feasibility of the model. Considering the further improvement of dronetechnology in the future, the study also analyzes the sensitivity of the maximum load and flight distance of drones. Theresults show that the delivery capacity of drone is affected by its load and flight distance. Increasing the deliverycapacity would enable drone to serve more customer demand points. Balanced increase of load and flight distance canfully utilize the delivery capacity of drone and extend the logistics distribution in rural areas.
Keywords:logistics engineering   joint delivery   simulated annealing algorithm   drone-vehicle   route optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号