首页 | 本学科首页   官方微博 | 高级检索  
     

基于自注意力机制与图自编码器的路网交通流数据修复模型
引用本文:张伟斌,张蒲璘,苏子毅,孙锋. 基于自注意力机制与图自编码器的路网交通流数据修复模型[J]. 交通运输系统工程与信息, 2021, 21(4): 90-98. DOI: 10.16097/j.cnki.1009-6744.2021.04.011
作者姓名:张伟斌  张蒲璘  苏子毅  孙锋
作者单位:1. 南京理工大学,a. 电子工程与光电技术学院,b. 计算机科学与工程学院,南京 210094; 2. 山东理工大学,交通与车辆工程学院,山东 淄博 255000
摘    要:针对城市交通流数据修复问题,提出一种基于图卷积网络和多头自注意力机制的自注意力图自编码器模型.该模型包括基于拓扑图结构和图信号捕获交通流时空关联性的STGCN(Spatial-temporal Graph Convolutional Networks)网络.在该网络中使用LSTM(Long Short-Term Mem...

关 键 词:智能交通  交通流数据修复  图卷积网络  城市路网交通流数据  自注意力机制
收稿时间:2021-04-20

Missing Data Repairs for Road Network Traffic Flow with Self-attention Graph Auto-encoder Networks
ZHANG Wei-bin,ZHANG Pu-lin,SU Zi-yi,SUN Feng. Missing Data Repairs for Road Network Traffic Flow with Self-attention Graph Auto-encoder Networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(4): 90-98. DOI: 10.16097/j.cnki.1009-6744.2021.04.011
Authors:ZHANG Wei-bin  ZHANG Pu-lin  SU Zi-yi  SUN Feng
Affiliation:1.a. School of Electronic and Optical Engineering, 1b. School of Computer Science and Engineering, Nanjing University ofScience and Technology, Nanjing 210094, China; 2. School of Transportation and Vehicle Engineering, ShandongUniversity of Technology, Zibo 255000, Shandong, China
Abstract:Focusing on the urban traffic flow imputation problem, this paper proposes a self- attention graphautoencoder (SA- GAE, Self- Attention Graph Auto- Encoder) based on the Graph Convolutional Networks andMultihead-Attention. The model includes the STGCN (Spatial-temporal Graph Convolutional Networks) networkwhich captures the spatial- temporal correlation of traffic flow based on the topological graph structures and graphsignals. In this network, the LSTM (Long Short-Term Memory) network is used to learn the temporal relationship inthe data, the road self-attention and the first- order adjacent road attention coefficient are calculated through the roadattention network, and the graph signal is reorganized by the graph convolution network to achieve the goal of preciseimputation of missing data. The Multihead-Attention network is used to calculate the attention weight of the data andreorganize the data. The Multihead-Attention network can capture the spatial correlation in the second-order and highorder neighbor road traffic flow data and extract the relationship between the known data after the missing period andthe missing data. The time relationship is added to the model in the form of residual chain as a supplement to thefunction of the STGCN. Experiments show that in multiple missing mode scenarios, the model can learn thetopological relationship of road network, capture the temporal regularity in traffic data, understand the temporal andspatial correlations contained, and effectively repair the missing parts of the data.
Keywords:intelligent transportation   traffic flow data imputation   graph convolutional network   urban road networktraffic flow data   self-attention mechanism  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号