首页 | 本学科首页   官方微博 | 高级检索  
     

基于数据驱动的机场水泥混凝土道面性能退化预测
引用本文:魏保立,郭成超,邓苗毅. 基于数据驱动的机场水泥混凝土道面性能退化预测[J]. 交通运输系统工程与信息, 2021, 21(3): 247-253. DOI: 10.16097/j.cnki.1009-6744.2021.03.031
作者姓名:魏保立  郭成超  邓苗毅
作者单位:1. 郑州大学,水利科学与工程学院,郑州 450001;2. 郑州航空工业管理学院,土木建筑学院,郑州 450046; 3. 中山大学,土木工程学院,广东 珠海 519082
基金项目:河南省高等学校重点科研项目/ Key Research Program of the Higher Education Institutions of Henan Province, China (21B580008);国家重点研发计划/National Key Research and Development Program of China (2016YFC0802203-5);河南省科技攻关项目/Science and Technology Program of Henan Province (182102310747)。
摘    要:针对机场道面性能退化过程的精确预测问题,本文采用数据驱动的机场道面预测性维护方法,通过指示变量将两种数据集进行联合分析,考虑机场道面性能退化过程受飞行交通量和道面面层厚度的影响,以机场道面性能状况指数衰变的非线性函数为期望函数,建立一种机场道面性能退化双参数预测模型;根据模型的参数估计结果,采用边际效应分析结合预测性能曲线图示,对不同飞行交通量水平和不同道面厚度等级的道面性能退化过程预测进行分析。结果表明,采用数据驱动和非线性混合效应方法,搭载联合估计技术,能较为显著地提高机场道面性能退化预测的精度和效果。

关 键 词:航空运输  混合效应模型  数据驱动  机场水泥混凝土道面  性能退化  
收稿时间:2021-04-06

Predicting Performance Degradation for Airport Portland Cement Concrete Pavements Based on Data-driven
WEI Bao-li,GUO Cheng-chao,DENG Miao-yi. Predicting Performance Degradation for Airport Portland Cement Concrete Pavements Based on Data-driven[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 247-253. DOI: 10.16097/j.cnki.1009-6744.2021.03.031
Authors:WEI Bao-li  GUO Cheng-chao  DENG Miao-yi
Affiliation:1. School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China; 2. School of Civil and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, China; 3. School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
Abstract:In order to accurately predict the airport pavement performance degradation, this paper adopts a data-driven predictive maintenance method, analyzes two data sets by means of indicator variables, considers the influence of flight traffic volume and pavement surface thickness, and establishes a two-parameter prediction model for airport pavement performance degradation with taking the nonlinear function of decay of airport PCI(pavement condition index) as the expectation function. Based on the parameter estimation results of the model, a marginal effect analysis combined with the predicted performance curve is used to analyze the prediction of the degradation under different flight traffic levels and different pavement surface thickness classes. The results show that the data-driven method and nonlinear mixedeffects approach with the joint estimation technique can significantly improve the accuracy and effectiveness of airport pavement performance degradation prediction.
Keywords:air transportation  mixed-effects model  data-driven  airport portland cement concrete pavements  performance degradation  
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号