首页 | 本学科首页   官方微博 | 高级检索  
     

基于站点实时关联度的短时公交客流预测方法
作者姓名:王福建  俞佳浩  赵锦焕  梅振宇
作者单位:1. 浙江大学,平衡建筑研究中心,杭州 310058;2. 江苏都市交通规划设计研究院有限公司,南京210009
摘    要:为探究公交站点之间的关联度并对公交客流进行更精准的实时预测,本文提出基于 Attention的交通预测核心算法(Traffic Forecast Model Based Attention,TFMA),结合数据预处理和 站点信息编码完成基于站点实时关联度的短时公交客流预测方法。该方法首先创新性地提出了 站点实时关联度,可实现对目标站点客流量更精准的预测;其次,在公交站点的编码信息中融入 线路站点信息、客流变化率、天气、日期等关联因素;接着,该方法依靠Attention机制计算站点实 时关联度;核心算法中使用multi-headed机制、增加通道和残差连接进一步提升预测能力;最后, 以苏州市公交数据进行验证。结果显示:在准确率上,对比多元线性回归的53.8%、GRU(Gated Recurrent Unit)的66.9%和LightGBM(Light Gradient Boosting Machine)的81.2%,本文提出的基于 站点实时关联度的短时公交客流预测方法的准确率在90%以上,表明该方法具备优秀的短时公 交客流预测能力。

关 键 词:智能交通  短时公交客流预测方法  Attention机制  Multi-headed机制  站点实时关联度   站点信息编码  
收稿时间:2021-04-22
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号