首页 | 本学科首页   官方微博 | 高级检索  
     

数据驱动跟驰模型综述
引用本文:贺正冰,徐瑞康,谢东繁,宗芳,钟任新. 数据驱动跟驰模型综述[J]. 交通运输系统工程与信息, 2021, 21(5): 102-113. DOI: 10.16097/j.cnki.1009-6744.2021.05.010
作者姓名:贺正冰  徐瑞康  谢东繁  宗芳  钟任新
作者单位:1. 北京工业大学,交通工程北京重点实验室,北京 100124;2. 北京交通大学,交通系统科学与工程研究院,北京 100044; 3. 吉林大学,交通学院,长春130022;4. 中山大学,智能工程学院,广州 510006
摘    要:车辆跟驰模型是被交通科学与交通工程领域广泛认可的微观交通流模型,是交通流理论的基础。近年来,信息感知与获取、大数据、人工智能等技术快速发展,推动了数据驱动跟驰模型的快速发展。数据驱动跟驰模型,是以真实的车辆行驶数据为基础,利用数据科学与机器学习等理论和方法,通过样本数据的训练、学习、迭代、进化,挖掘车辆跟驰行为的内在规律。本文系统回顾了数据驱动跟驰模型在过去20余年的发展历程以及由神经网络和深度学习带动的两次研究热潮,归纳了基于传统机器学习理论的跟驰模型、基于深度学习的跟驰模型、模型与数据混合驱动的跟驰模型3类数据驱动跟驰模型,并分别介绍了其中的典型代表。分析数据源发现,尽管各种高精度轨迹数据不断涌现,目前研究仍多使用美国于2006年发布的Next Generation Simulation(NGSIM)高精度车辆轨迹数据,模型的可移植性和泛化能力值得思考与研究。提出关于模型输入、输出的3个问题:如何考虑更多驾驶行为变量,是否有必要考虑更多行为变量,现有输入、输出是否可替换。在模型测试与验证方面,发现并讨论了目前测试不充分、对比不完整、缺少统一测试集与测试标准等问题。最后,探讨了数据驱动跟驰模型原创性与成功的关键因素等问题。期望通过本文的梳理,帮助研究者更好地了解数据驱动跟驰模型的过去与现状,促进相关研究的快速发展。

关 键 词:交通工程  交通流理论  深度学习  机器学习  大数据  跟驰模型  
收稿时间:2021-04-08

A Review of Data-driven Car-following Models
HE Zheng-bing,XU Rui-kang,XIE Dong-fan,ZONG Fang,ZHONG Ren-xin. A Review of Data-driven Car-following Models[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 102-113. DOI: 10.16097/j.cnki.1009-6744.2021.05.010
Authors:HE Zheng-bing  XU Rui-kang  XIE Dong-fan  ZONG Fang  ZHONG Ren-xin
Affiliation:1. Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China; 2. Institute ofTransportation System Science and Engineering, Beijing Jiaotong University, Beijing 100044, China; 3. TransportationCollege, Jilin University, Changchun 130022, China; 4. School of Intelligent Systems Engineering, Sun Yat-SenUniversity, Guangzhou 510006, China
Abstract:A car- following model is one of the microscopic traffic flow models that are widely focused on bytransportation research and engineering. In recent years, the rapid technological advancement in information perceptionand acquisition, big data, and artificial intelligence, etc., has promoted the great development of data- driven carfollowing models. Based on data science and machine learning theory, data-driven car- following models obtain theinherent law of car- following behaviors through the training, learning, iteration and evolution of real-world vehiclemotion data. This paper reviews the evolution of data-driven car-following models over the past 20 years and analyzesits two research waves driven by neural network and deep learning, respectively. Three typical types of data-driven carfollowing models and their representatives are reviewed, including traditional machine learning- based car- followingmodels, deep learning-based car- following models, and model-data hybrid driven car- following models. Data sourceanalysis indicates that, although a variety of high-fidelity trajectory datasets are constantly emerging, the NextGeneration Simulation (NGSIM) datasets released by the United States in 2006 are still the most widely used, inparticular in recent years. Therefore, the transferability and generalization of the models are worth investigating. Wealso discuss from the following aspects: model input and output including how to involve more driving behaviorvariables, whether it is necessary to consider more behavioral variables, and whether the existing input and output canbe replaced; Model testing and verification including insufficient testing, incomplete comparison, lack of unified testdataset and test standard. At last, the key factors regarding the originality and success of data- driven car- followingmodels are discussed. It is expected that this review can help researchers better understand the past and presentsituations of data-driven car-following models and promote the progress of related research.
Keywords:traffic engineering   traffic flow theory   deep learning   machine learning   big data   car-following model  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号