首页 | 本学科首页   官方微博 | 高级检索  
     

考虑连锁冲突的城市公交车行车风险量化分析方法
引用本文:李熙莹, 梁靖茹, 郝腾龙. 考虑连锁冲突的城市公交车行车风险量化分析方法[J]. 交通信息与安全, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
作者姓名:李熙莹  梁靖茹  郝腾龙
作者单位:1.中山大学智能工程学院 广州 510006;2.中山大学广东省智能交通系统重点实验室 广州 510006;3.中山大学视频图像智能分析与应用技术公安部重点实验室 广州 510006
基金项目:国家重点研发计划项目2018YFB1601100
摘    要:为了量化城市公交车给区域混合交通带来的安全风险,通过提取交通冲突数据并识别连锁冲突,研究了公交车行车风险的量化分析方法。在数据采集上,采用了航拍图像并基于YOLOv4网络学习航拍目标的外观特征,检测并跟踪航拍车辆,从而提取带精细属性的车辆轨迹数据。在冲突识别上,将不同车道上可能发生横向碰撞的车辆对之间的相对位置作为约束条件,在跟驰模型的基础上补充了匹配相邻车道上车辆对的动态关系,从而将经典碰撞时间(TTC)模型扩展至可同时识别侧向冲突的二维TTC模型;基于车辆刺激-反应理论标定每个冲突车辆对区域交通造成连续干扰的时空范围,根据干扰范围的动态变化建立冲突间的作用关系并形成时序性的冲突树模型,从而识别连锁冲突并追溯连续风险形成的因果过程。在风险研究上,从3个方面量化不同状态下城市公交车的行车风险:①基于二维TTC模型解析冲突频率;②在此基础上结合累积频率法解析冲突严重性;③通过连锁冲突比例及冲突树长度解析冲突聚集的概率和范围大小。采集广州大桥路段航拍视频进行实验研究,结果表明:城市公交车在拥堵常发路段不仅冲突风险高,且带有较高的冲突严重性和区域聚集性;拥堵流中公交车的冲突频率超过9次(/ veh·min);公交车的严重冲突率为33.39%,远远高于小汽车的16.61%;公交车的区域连锁冲突发生率为30.75%,达到了小汽车(14.67%)的2倍。

关 键 词:交通安全   城市公交车   交通安全风险分析   连锁冲突识别   交通冲突技术
收稿时间:2022-01-11

A Method for Quantitatively Analyzing Risks Associated with the Operation of Urban Buses Considering Chained Conflicts
LI Xiying, LIANG Jingru, HAO Tenglong. A Method for Quantitatively Analyzing Risks Associated with the Operation of Urban Buses Considering Chained Conflicts[J]. Journal of Transport Information and Safety, 2022, 40(3): 19-29. doi: 10.3963/j.jssn.1674-4861.2022.03.003
Authors:LI Xiying  LIANG Jingru  HAO Tenglong
Affiliation:1. School of Intelligent Systems Engineering, Sun Yat-Sen University, Guangzhou 510006, China;2. Guangdong Provincial Key Laboratory of Intelligent Transportation System, Sun Yat-Sen University, Guangzhou 510006, China;3. Key Laboratory of Video and Image Intelligent Analysis and Application Technology of Ministry of Public Security, Sun Yat-Sen University, Guangzhou 510006, China
Abstract:A quantitative method for analyzing risks associated with the operation of buses in mixed traffic environment is studied by extracting data about traffic conflict and identifying a set of chain-conflicts. Regarding data collection, aerial video data are adopted based on which features of objects are extracted using YOLOv4 network. In this way, the trajectories with accurate attributes for buses and other related vehicles can be obtained. Regarding the identification of vehicle conflicts, the relative locations between pairs of vehicles which are likely to collide laterally in different lanes are set up as constraints. Based on the classic car-following model, the dynamic relationship of vehicle pairs in adjacent lanes is studied and added. With this, the classic time-to-collision(TTC)model is extended to a two-dimensional TTC model, which can identify lateral conflicts as well. Next, according to the Stimulus-Re-sponse Theory, the temporal and spatial scope caused by each conflicting vehicle who continuously disturb regional traffic is calibrated to study interrelationships between conflicted vehicles, and a time-series conflict tree model is established. With this, chained conflicts can be identified and the causal relationship between continuous risks can be traced using the conflict tree model. The risks of urban buses under different traffic settings are quantified from the following three aspects: ①the frequency of the conflicts is analyzed based on the two-dimensional TTC model; ②on this basis, the severity of conflicts is analyzed combined with cumulative frequency method; ③the probability and scope of conflicts are analyzed through ratio of chain conflicts and the length of conflict tree. Aerial video data of Guangzhou Bridge Road are collected for a case study. The results show that urban buses in frequently congested sections have high conflict risks, which reveal have high rate of severity and regional aggregation. The conflict frequency of buses in congested traffic flow exceeds 9 times per vehicle per minute. The average rate of serious conflicts of buses is 33.39%, which is much higher than the corresponding rate of regular passenger vehicles(i.e., 16.61%). The rate of regional chain-conflicts caused by buses is 30.75%, which is twice than that of cars(i.e., 14.67%) 
Keywords:traffic safety  urban bus  traffic safety risk analysis  chain conflict recognition  traffic conflict technology
点击此处可从《交通信息与安全》浏览原始摘要信息
点击此处可从《交通信息与安全》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号