首页 | 本学科首页   官方微博 | 高级检索  
     

基于长短期记忆神经网络与注意力机制的智能汽车分车型跟驰模型
作者姓名:柏海舰  孙婷  丁恒  王昌胜  陈星宇  过晨晨  李亚
摘    要:考虑到跟驰车流中前车车型对智能汽车跟车行为的影响,采用长短期记忆 (Long Short Term Memory,LSTM)神经网络,基于 NGSIM 数据集,通过 One-Hot方法编码车型特征,并引入注意力机制 (Attention Mechanism) 生成输入特征的注意力权重,训练并建立了一种可根据前车车型产生不同跟驰行为的智能车辆跟驰模型 (Identifiable Vehicle Type Car-Following Model,IVT-CF)。在不同前车车型的跟车场景中仿真发现,IVT-CF 模型仿真车辆的速度和位移的均方误差 (Mean Square Error,MSE) 比不分车型的 LSTM 模型分别降低了 23.8%、31.7%,比 IDM 模型分别降低了 15.8%、18.7%,仿真精度更高。在混入大型车辆的车队跟驰场景仿真中发现,交通流速度和车头间距的收敛时间为 92 s,该模型能较快收敛,具有较好的稳定性和抗干扰能力。

关 键 词:驾驶行为  跟驰  注意力机制  长短期记忆神经网络  车型  智能汽车
点击此处可从《汽车工程学报》浏览原始摘要信息
点击此处可从《汽车工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号