首页 | 本学科首页   官方微博 | 高级检索  
     

基于图正则化和Schatten-p范数最小化的交通数据恢复
作者姓名:陈小波  梁书荣  柯佳  陈玲  胡煜
作者单位:1.江苏大学汽车工程研究院,江苏 镇江 2120132.江苏大学管理学院,江苏 镇江 212013
基金项目:国家自然科学基金(61773184);国家重点研发计划(2018YFB0105000);江苏省六大人才高峰高层次人才项目(JXQC-007)
摘    要:为充分利用交通数据低秩特性与局部近邻关系,准确恢复交通数据采集系统中的缺失数据,首先,应用基于核范数的低秩矩阵补全模型对交通数据矩阵进行预插补,以获得缺失值的初始估计,基于此,构建表征数据局部近邻结构的图模型;然后,提出融合图正则化和Schatten-p范数最小化的交通数据缺失值恢复模型;进一步,提出基于交替方向乘子框架的优化算法,求解缺失值恢复的最优化问题,得到最终的数据恢复结果;最后,用实际的高速公路交通流量和速度数据比较多种方法的恢复误差,同时给出所提方法的参数敏感性分析. 实验结果表明:在完全随机缺失、随机缺失和混合缺失模式下,缺失率为10% ~ 50%时,相比于局部最小二乘、概率主成分分析和低秩矩阵补全等方法,基于图正则化和Schatten-p范数最小化的算法恢复误差降低了3.02% ~ 28.49%. 

关 键 词:智能交通   数据恢复   Schatten-p范数   交通数据   图正则化
收稿时间:2021-04-13
点击此处可从《西南交通大学学报》浏览原始摘要信息
点击此处可从《西南交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号