首页 | 本学科首页   官方微博 | 高级检索  
     

基于动态时间调整的时空图卷积路网交通流量预测
引用本文:刘宜成,李志鹏,吕淳朴,张涛,刘彦. 基于动态时间调整的时空图卷积路网交通流量预测[J]. 交通运输系统工程与信息, 2022, 22(3): 147-157. DOI: 10.16097/j.cnki.1009-6744.2022.03.017
作者姓名:刘宜成  李志鹏  吕淳朴  张涛  刘彦
作者单位:1. 四川大学,电气工程学院,成都 610065;2. 清华大学,自动化系,北京 100084
基金项目:四川大学-泸州战略合作项目
摘    要:为深入挖掘交通流数据的复杂时空特征并建立其依赖关系,提高交通流参数的预测精度,本文提出一种新的交通流量预测模型——基于注意力机制和残差网络的时空关系图卷积网络(TSARGCN)。TSARGCN对输入数据进行切片,实现多分支建模,挖掘数据的时间周期性特征;引入残差网络保证网络中信息传递的完整性;利用DTW (Dynamic Time Warping)算法计算路网中节点之间交通流量序列在时间维度的相似程度大小,提出时间图的概念,结合路网结构中各节点的邻近关系,提出时空关系图的概念;基于时空关系图,在每个分支结合注意力机制分别进行图卷积和时间维度卷积,捕获交通流的时空特征及其依赖关系,实现对路网交通流量数据时空关系的建模。经过在公开数据集PEMSD4上进行实验,结果表明:TSARGCN在交通流量预测中的平均绝对误差 (MAE) 达 到 19.24,均方根误差 (RMSE) 达到 27.09,比 ARIMA(AutoregressiveIntegrated Moving Average model),Conv-LSTM(Convolution Long short-term memory)及 ASTGCN(Attention based Spatial-temporal Graph Convolutional Network)等知名交通流量预测算法具有更高的预测精度。

关 键 词:智能交通  交通流量预测  图卷积网络  路网交通流量  DTW算法  注意力机制  
收稿时间:2022-01-20

Network-wide Traffic Flow Prediction Research Based onDTW Algorithm Spatial-temporal Graph Convolution
LIU Yi-cheng,LI Zhi-peng,LV Chun-pu,ZHANG Tao,LIU Yan. Network-wide Traffic Flow Prediction Research Based onDTW Algorithm Spatial-temporal Graph Convolution[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 147-157. DOI: 10.16097/j.cnki.1009-6744.2022.03.017
Authors:LIU Yi-cheng  LI Zhi-peng  LV Chun-pu  ZHANG Tao  LIU Yan
Affiliation:1. College of Electrical Engineering, Sichuan University, Chengdu 610065, China;2. Department of Automation, Tsinghua University, Beijing 100084, China
Abstract:To deeply explore the complex temporal and spatial characteristics of traffic flow data and establish theirdependence relationship, a new traffic flow prediction model, TSARGCN, based on attention mechanism and residualnetwork, is proposed to improve the prediction accuracy of traffic flow parameters. The TSARGCN slices the inputdata to realize the time periodicity of data mining by multi-branch modeling. A residual network is introduced to ensurethe integrity of information transmission in the network. The DTW algorithm was used to calculate the similaritydegree of traffic flow sequence between nodes in the road network in the time dimension, and the concept of a timegraph was put forward. Based on the spatial-temporal diagram, graph convolution and time convolution were carriedout in each branch combined with an attention mechanism, respectively, to capture the spatial-temporal characteristicsof the traffic flow and its dependence relationship, and then the spatial-temporal relationship of the traffic flow datawas modeled. Experiments on the open data set PEMSD4 show that, MAE and RMSE of the TSARGCN are 19.24 and27.09, respectively, which are better than those of ARIMA, CONV-LSTM, and ASTGCN.
Keywords:intelligent transportation,traffic flow prediction,graph convolutional network,road network traffic flow  DTW algorithm,attentional mechanism,
点击此处可从《交通运输系统工程与信息》浏览原始摘要信息
点击此处可从《交通运输系统工程与信息》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号