首页 | 本学科首页   官方微博 | 高级检索  
     

基于长短期记忆网络的动车组轴箱轴承故障诊断预测模型研究
引用本文:刘冠男,常振臣,高明亮,赵明,高珊. 基于长短期记忆网络的动车组轴箱轴承故障诊断预测模型研究[J]. 城市轨道交通研究, 2022, 25(2): 86-91. DOI: 10.16037/j.1007-869x.2022.02.022
作者姓名:刘冠男  常振臣  高明亮  赵明  高珊
作者单位:中车长春轨道客车股份有限公司国家轨道客车工程研究中心,130062,长春
基金项目:中国国家铁路集团有限公司科技研究开发计划
摘    要:动车组轴箱轴承是动车组转向架的关键部件,其运行品质直接影响动车组的运营安全.以深度学习算法为基础,利用轴承振动信号时间序列的特点和LSTM(长短期记忆网络)擅长处理时间序列的优势,通过构建LSTM模型对轴承的故障状态进行识别,开发了基于深度学习的轴承故障诊断预测软件,实现了轴承故障早期的分类与诊断.模型的仿真和试验表明...

关 键 词:动车组  轴箱轴承  故障诊断预测模型  长短期记忆网络

Fault Diagnosis Model for EMU Bogie Bearing Based on LSTM
LIU Guannan,CHANG Zhenchen,GAO Mingliang,ZHAO Ming,GAO Shan. Fault Diagnosis Model for EMU Bogie Bearing Based on LSTM[J]. Urban Mass Transit, 2022, 25(2): 86-91. DOI: 10.16037/j.1007-869x.2022.02.022
Authors:LIU Guannan  CHANG Zhenchen  GAO Mingliang  ZHAO Ming  GAO Shan
Affiliation:(National Engineering Research Center of Railway Vehicles,CRRC Changchun Railway Vehicles Co.,Ltd.,130062,Changchun,China)
Abstract:Bogie axle box bearing is a key component of EMU bogie,its operation quality directly affects the EMU operation safety.Based on deep learning algorithm,the characteristics of bearing vibration signal time series and the advantages of LSTM(long-short term memory)in dealing with time series are used,to identify the fault state of bearing by way of constructing an LSTM model.Then,a prediction software based on deep learning is developed,so as to realize the early classification and diagnosis of bearing faults.The simulation and test results show that the diagnostic model can effectively improve the identification accuracy of fault diagnosis,the goodness of model fitting and the identification accuracy rate could reach 90%and 98%respectively.
Keywords:EMU  bogie axle box bearing  fault diagnosis model  LSTM
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号