首页 | 本学科首页   官方微博 | 高级检索  
     

基于线性自适应神经网络的摆式列车横向加速度预测研究
引用本文:张济民,池茂儒,王开文,安晓钟. 基于线性自适应神经网络的摆式列车横向加速度预测研究[J]. 机车电传动, 2004, 0(2): 15-17
作者姓名:张济民  池茂儒  王开文  安晓钟
作者单位:西南交通大学,牵引动力研究中心,四川,成都,610031;眉山车辆厂,制动科技有限公司,四川,眉山,620032
基金项目:铁道部科技发展计划项目(99J45-B)
摘    要:
阐述了用线性自适应神经网络对即将输入的控制参考信号进行多步在线自适应预测并编程实现的方法。对实测信号的仿真分析表明,线性自适应网络可以以满意的精度对摆式列车横向加速度进行多步预测,有效解决由于各种因素造成的滞后补偿问题。

关 键 词:线性自适应  神经网络  多步预测  摆式列车  横向加速度
文章编号:1000-128X(2004)02-0015-03
修稿时间:2003-03-25

Study on prediction of lateral acceleration of tilting train based on linear adaptive neural networks
ZHANG Ji-min,CHI Mao-ru,WANG Kai-wen,AN Xiao-zhong. Study on prediction of lateral acceleration of tilting train based on linear adaptive neural networks[J]. Electric Drive For Locomotive, 2004, 0(2): 15-17
Authors:ZHANG Ji-min  CHI Mao-ru  WANG Kai-wen  AN Xiao-zhong
Affiliation:ZHANG Ji-min1,CHI Mao-ru1,WANG Kai-wen1,AN Xiao-zhong2
Abstract:
The way is elaborated to predict multi-step online the reference control signal to be input soon with the linear adaptiveneural network and so is the way of realization by programming. The simulation analysis of measured signals show that the linear adaptivenetwork is able to predict multi-step the lateral acceleration of tilting train with satisfying accuracy, and it is able to solve efficiently lagcompensation problems caused by various reasons.
Keywords:linear adaption  neural network  multi-step prediction  titling train  lateral acceleration
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号