首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的发动机气路故障预诊断
引用本文:王旭辉, 黄圣国, 施鼎豪, 舒平. 基于支持向量机的发动机气路故障预诊断[J]. 交通运输工程学报, 2008, 8(5): 33-37.
作者姓名:王旭辉  黄圣国  施鼎豪  舒平
作者单位:1.南京航空航天大学 民航学院, 江苏 南京 210016;;2.中国民用航空局 安全技术中心, 北京 100028
基金项目:国家高技术研究发展计划(863计划)
摘    要:为实现航空发动机气路故障在线预诊断, 分析了地空数据链系统中发动机气路参数报文的协议格式, 建立了基于支持向量机算法的发动机气路参数在线预测模型。以便携式地空数据链收发系统为硬件基础, 构建发动机报文并行处理系统, 获取建模所需的训练样本。利用最终误差预报准则确定样本数据嵌入维数, 实现时序样本数据的相空间重构。提出自适应网格搜索法优化支持向量机建模参数, 获得气路参数在线预测模型, 与航路飞机建立地空数据链通信, 预测气路参数趋势。预测结果表明: 参数低压转子转速、高压转子转速、尾气温度与燃油流量的相对预测误差分别为2.5%、2.1%、1.9%与2.3%, 因此, 支持向量机模型具有较高预测精度。

关 键 词:航空发动机   故障预诊断   支持向量机   气路参数
收稿时间:2008-04-25

Gas path fault prognosis of aeroengine based on support vector machine
WANG Xu-hui, HUANG Sheng-guo, SHI Ding-hao, SHU Ping. Gas path fault prognosis of aeroengine based on support vector machine[J]. Journal of Traffic and Transportation Engineering, 2008, 8(5): 33-37.
Authors:WANG Xu-hui  HUANG Sheng-guo  SHI Ding-hao  SHU Ping
Affiliation:1. School of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China;;2. Center of Aviation Safety Technology, Civil Aviation Administration of China, Beijing 100028, China
Abstract:In order to reality the online forecast of aeroengine gas path fault,the protocol and content of the gas path parameters' report in aircraft communication addressing and reporting system(ACARS) were analyzed,and an online forecast model of the parameters based on support vector machine(SVM) algorithm was established.A real-time processing system of aeroengine report was built by using portable air-ground data link transceiver for obtaining the training samples of the model.Final prediction error(FPE) principle was suggested to optimize the embedding dimensions of the samples,and the phase spaces of the samples were reconstructed.An adaptive grid search algorithm was put forward to optimize the parameters of the model,and the model was linked to route plane by using ACARS.Forecast result shows that the relative forecast errors of low-pressure compressor rotor speed,high-pressure compressor rotor speed,exhaust gas temperature and fuel flow are 2.5%,2.1%,1.9% and 2.3% respectively,so the model is feasible.2 tabs,6 figs,11 refs.
Keywords:aeroengine  fault prognosis  support vector machine  gas path parameter
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号