基于观测数据潜在特征与双向长短期记忆网络的车辆轨迹预测 |
| |
作者姓名: | 郭应时 张瑞宾 陈元华 李天明 蒋春燕 |
| |
作者单位: | 长安大学,西安 710064;长安大学,西安 710064;桂林航天工业学院,桂林 541004;桂林航天工业学院,桂林 541004 |
| |
基金项目: | 国家重点研发计划项目(2019YFB1600500);;国家自然科学基金项目(51775053,51908054);;广西自然科学基金项目(2020GXNSFAA159071); |
| |
摘 要: | 针对传统算法无法满足复杂交通场景下无人驾驶车辆对周围运动车辆轨迹预测需求的问题,提出一种基于观测数据潜在特征与双向长短期记忆(BiLSTM)网络的车辆轨迹预测方法.首先利用一维卷积神经网络(1DCNN)提取由传感器所获取的车辆运行状态观测数据的潜在特征,然后将以序列方式构造的具有时空关系的特征向量作为BiLSTM网络的...
|
关 键 词: | 观测数据 卷积神经网络 双向长短期记忆 时空关系 轨迹预测 |
本文献已被 万方数据 等数据库收录! |
|