基于改进遗传算法的航班-登机口分配多目标优化 |
| |
引用本文: | 余朝军, 江驹, 徐海燕, 朱平. 基于改进遗传算法的航班-登机口分配多目标优化[J]. 交通运输工程学报, 2020, 20(2): 121-130. doi: 10.19818/j.cnki.1671-1637.2020.02.010 |
| |
作者姓名: | 余朝军 江驹 徐海燕 朱平 |
| |
作者单位: | 1.南京航空航天大学自动化学院, 江苏 南京 211106;2.南京航空航天大学经济与管理学院, 江苏 南京 211106 |
| |
基金项目: | 国家自然科学基金;研究生科研创新项目 |
| |
摘 要: |  为提高现代机场的资源利用效率和乘客换乘体验, 研究了多目标航班-登机口分配问题; 在考虑航班类型约束、飞机机体类型约束和转场时间间隔约束的基础上, 以分配在固定登机口的航班数量最多、使用的固定登机口数量最少和乘客换乘紧张度最小为目标函数, 建立了航班-登机口分配的多目标非线性0-1整数规划模型, 并设计了一种改进型基因编码的遗传算法以提高求解效率; 基因个体采用两段式整数编码, 设计了该编码方式到可行解的映射流程, 同时从理论上证明该编码方式可以映射到最优解; 对两段基因编码分别设计了不同的交叉算子和变异算子, 避免产生非可行个体; 为验证算法的有效性, 基于某大规模机场的实际运营数据, 对比了改进型遗传算法与MATLAB内置遗传算法。 计算结果表明: 采用改进型遗传算法使得安排在固定登机口的航班数目增大5%, 乘客换乘总紧张度减小3%, 乘客换乘平均紧张度减小32%, 占用的固定登机口数量相同, 安排在固定登机口的乘客数量增大20%, 算法运行时间减小8%, 说明改进型遗传算法性能更好, 可提高登机口的利用效率和乘客的换乘舒适度; 在改进型遗传算法的优化过程中, 航班数量目标和登机口数量目标在130次迭代时寻到最优解, 换乘紧张度目标在400次迭后基本收敛, 且最优结果对应的航班时序合理, 说明该算法的迭代收敛速度快, 优化结果合理。

|
关 键 词: | 交通规划 大规模优化问题 航班-登机口分配 遗传算法 基因编码 多目标优化 |
收稿时间: | 2019-10-22 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《交通运输工程学报》浏览原始摘要信息 |
|
点击此处可从《交通运输工程学报》下载全文 |
|