首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于傅汝德-克雷洛夫力非线性法的规则波浪中船舶运动数学模型
引用本文:张腾,任俊生,梅天龙.基于傅汝德-克雷洛夫力非线性法的规则波浪中船舶运动数学模型[J].交通运输工程学报,2020,20(2):77-87.
作者姓名:张腾  任俊生  梅天龙
作者单位:1.大连海事大学航海学院, 辽宁 大连 1160262.上海交通大学船舶海洋与建筑工程学院, 上海 200240
基金项目:国家自然科学基金;中央高校基本科研业务费专项;国家高技术研究发展计划(863计划)
摘    要:为准确预报规则波浪中船舶的运动, 提出基于四叉树划分的自适应网格法, 以生成船舶瞬时湿表面, 在船舶瞬时湿表面上计算傅汝德-克雷洛夫(F-K)力与静恢复力; 对于与波面相交的面元, 由于F-K力在波面处剧烈波动, 采用四叉树划分法进一步细分面元; 基于线性理论, 采用瞬时自由面格林函数在船舶平均湿表面上计算扰动力; 为避免瞬时自由面格林函数在自由液面处剧烈波动产生严重数值误差, 舍去扰动势所满足边界积分方程中的水线项, 并对迎浪前进速度为傅汝德数0.2的WigleyⅠ型船舶进行数值计算。计算结果表明: 对低于瞬时波面以下的船体部分, F-K力非线性法所需面元数更少, 为细网格法的1/4~1/8;除不规则频率外, 舍去与未舍去水线项所得水动力系数与试验值的相对误差分别小于33.4%、54.8%, 因此, 舍去水线项所得水动力系数更接近试验结果; 当入射波波幅为0.018 m, 波长与船长比为1.25时, 采用F-K力非线性法与线性法所得纵摇幅值响应因子的计算结果分别比试验值低3.2%、17.0%, 波长与船长比为2.00时, 采用F-K力非线性法与线性法所得纵摇幅值响应因子的计算结果分别比试验值低6.7%、13.5%, 可见, 采用F-K力非线性法能够准确地仿真规则波浪中船舶的运动。 

关 键 词:船舶工程    航海模拟器    傅汝德-克雷洛夫力    四叉树    瞬时湿表面    瞬时自由面格林函数    水线项
收稿时间:2019-08-01

Mathematical model of ship motions in regular waves based on Froude-Krylov force nonlinear method
ZHANG Teng,REN Jun-sheng,MEI Tian-long.Mathematical model of ship motions in regular waves based on Froude-Krylov force nonlinear method[J].Journal of Traffic and Transportation Engineering,2020,20(2):77-87.
Authors:ZHANG Teng  REN Jun-sheng  MEI Tian-long
Institution:1.Navigation College, Dalian Maritime University, Dalian 116026, Liaoning, China2.School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, Chin
Abstract:To accurately predict the ship motions in regular waves, the adaptive mesh method based on the quad-tree division was proposed to generate the instantaneous wet hull surface. The Froude-Krylov(F-K) force and hydrostatic restoring force were calculated on the instantaneous wet hull surface. For the F-K force fluctuating violently at the wave profile, the quad-tree division method was adopted to further divide the panels interacted with the wave profile. Based on the linear theory, the perturbation forces were calculated on the mean wet hull surface by using the instantaneous free surface Green function. To avoid the serious numerical error caused by the violent fluctuation of instantaneous free surface Green function near the free liquid surface, the waterline integral term of boundary integral equation satisfied by the perturbation potential was excluded. The numerical computation was carried out for the Wigley Ⅰ hull with a forward speed against waves at a Froude number of 0.2. Calculation result shows that for the hull under the instantaneous wave profile, the quantity of panel required by the F-K force nonlinear method is less, being 1/4-1/8 of the fine mesh method. Except for irregular frequencies, the relative errors of hydrodynamic coefficients obtained by the methods with and without waterline term are less than 33.4% and 54.8%, respectively, comparing with the experimental result. Therefore, the hydrodynamic coefficient computational result obtained with the waterline term is closer to the experimental result. When the incident wave amplitude is 0.018 m, and the ratio of wave length to ship length is 1.25, the pitch response amplitude operators obtained by the F-K force nonlinear method and the linear method are 3.2% and 17.0%, respectively, lower than the experimental value. When the ratio of wave length to ship length is 2.00, the pitch response amplitude operators obtained by the F-K force nonlinear method and the linear method are 6.7% and 13.5%, respectively, lower than the experimental value. Thus, the F-K force nonlinear method can accurately simulate the ship motions in regular waves. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号