首页 | 本学科首页   官方微博 | 高级检索  
     

一种被动声纳目标识别数据融合方法的研究
引用本文:王菲. 一种被动声纳目标识别数据融合方法的研究[J]. 中国水运, 2007, 5(4): 123-125
作者姓名:王菲
作者单位:湖北水利水电职业技术学院
摘    要:文章首先对目标噪声信号采用五种不同的方法提取特征矢量,然后采用基于自适应遗传BP算法的神经网络分别对五种特征矢量并发地进行分类,再采用遗传算法对分类器组合过程中的多参数进行优化,最后由五种分类结果最优组合产生最终的分类结果。实验结果表明该系统具有很好的分类效果。

关 键 词:被动声纳目标识别  自适应遗传BP算法  神经网络分类器  特征提取  数据融合
文章编号:1006-7973(2007)04-0123-03
修稿时间:2007-02-23

Research on Technique of Passive Sonar Target Recognition Based on data fusion
Wang Fei. Research on Technique of Passive Sonar Target Recognition Based on data fusion[J]. China Water Transport, 2007, 5(4): 123-125
Authors:Wang Fei
Abstract:Feature extraction of targets radiated-noise and design of targets classifier are key techniques of passive sonar target recognition system. ln this paper, five feature extraction methods are applied to extract feature of targets radiated-noise at first. And then a novel method of a combinational classification system of multiple neural network target classifiers is proposed for passive sonar target recognition. Each neural network target classifier based on adaptive genetic back-propagation algorithm is used to classify for five kinds of feature vector separately. Then, the multiple parameters in the classification combination are optimized by using genetic-backpropagation algorithm.At last,the best combination of five classification results is the final result. The classification experiment for three different classes of targets is done, results of experiment show that the passive sonar target recognition system designed in the paper has higher correct classification rate.
Keywords:passive sonar target recognition neural network target classifiers feature extraction adaptive genetic back-propagation algorithm data fusion
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号