首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于实测数据的穿越软塑黄土层大断面隧道围岩与支护动态作用机制
引用本文:来弘鹏,赵铭坤,刘禹阳,洪秋阳,黄鹏志,沈鹏翔.基于实测数据的穿越软塑黄土层大断面隧道围岩与支护动态作用机制[J].交通运输工程学报,2023,23(1):115-131.
作者姓名:来弘鹏  赵铭坤  刘禹阳  洪秋阳  黄鹏志  沈鹏翔
作者单位:1.长安大学 公路学院,陕西 西安 7100642.长安大学 建筑工程学院,陕西 西安 7100613.广州市市政工程设计研究总院有限公司,广东 广州 5100304.中国水电建设集团十五工程局有限公司,陕西 西安 710065
基金项目:国家自然科学基金项目51978064国家自然科学基金项目52278391
摘    要:选取软塑黄土层分布于隧道拱顶、洞身和隧底3组典型断面开展实测研究,分析了软塑层影响下的围岩变形特征、支护结构力学特征及其差异性,提出了基于实测数据确定支护特性曲线的方法,揭示了软塑黄土层影响下的围岩与支护动态作用机制,给出了相应的防控理念及措施。分析结果表明:隧道围岩变形由大到小依次为软塑黄土层分布于拱顶段、洞身段和隧底段;软塑黄土层分布于拱顶段支护结构拱肩和边墙脚、洞身段拱腰及其以下位置、隧底段拱部和仰拱承受较大围岩压力作用;支护结构承受主要荷载来压方向不同、围岩应力随开挖步序释放率不同及地下水渗流路径不同是3组断面支护结构应力存在差异的直接原因;软塑黄土层分布于拱顶和洞身段时,围岩超前应力释放率约为35%,上台阶开挖支护结构力学性能迅速恶化,软塑黄土层分布于隧底段时,下台阶开挖软塑黄土层对支护结构将产生显著影响;针对上述3类工况,提出的强支护、控侧压和防突沉的防控理念及超前帷幕注浆、大锁脚和基底袖阀管注浆等施工控制措施可有效避免施工灾害的发生。

关 键 词:隧道工程  软塑黄土层  现场监测  围岩-支护特性曲线  作用机制  防控措施
收稿时间:2022-08-17

Dynamic mechanism of surrounding rock and support of large-section tunnel passing through soft-plastic loess layer based on measured data
LAI Hong-peng,ZHAO Ming-kun,LIU Yu-yang,HONG Qiu-yang,HUANG Peng-zhi,SHEN Peng-xiang.Dynamic mechanism of surrounding rock and support of large-section tunnel passing through soft-plastic loess layer based on measured data[J].Journal of Traffic and Transportation Engineering,2023,23(1):115-131.
Authors:LAI Hong-peng  ZHAO Ming-kun  LIU Yu-yang  HONG Qiu-yang  HUANG Peng-zhi  SHEN Peng-xiang
Institution:1.School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China2.School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China3.Guangzhou Municipal Engineering Design and Research Institute Co., Ltd., Guangzhou 510030, Guangdong, China4.Sinohydro Corporation Engineering Bureau 15 Co., Ltd., Xi'an 710065, Shaanxi, China
Abstract:Three groups of typical sections with soft-plastic loess layer distributed in the tunnel crown, tunnel body, and tunnel bottom respectively were selected for testing. The deformation characteristics of surrounding rock under the influence of soft-plastic loess layer, the mechanical characteristics of support structure, and their differences were analyzed. The method to determine the characteristic curve of support based on the measured data was proposed. The dynamic mechanism of surrounding rock and support under the influence of soft-plastic loess layer was revealed, and the corresponding control concepts and measures were offered. Analysis results show that the deformation of surrounding rock in descending order results from the soft-plastic loess layer distributed in the tunnel crown, tunnel body and tunnel bottom. The soft-plastic loess layer distributing in the arch shoulder and side wall of support structure of the tunnel crown, the arch waist and its lower positions, and the arch and inverted arch of the tunnel bottom, bears greater pressure of the surrounding rock. The direct reasons for the difference in the stresses of the three sections are the different directions of the main load of the support structure, the different release rates of the pressure of the surrounding rock with the excavation sequence, and the different seepage paths of groundwater. When the soft-plastic loess layer distributes in the tunnel crown and tunnel body, the release rate of advance stress of the surrounding rock is about 35%, and the mechanical properties of the support structure deteriorate rapidly after the upper bench excavation. When the soft-plastic loess layer distributes in the bottom of the tunnel, the excavation of soft-plastic loess layer in the lower bench significantly impacts the support structure. For the above three types of working condition, the control concepts of strong support, lateral pressure control, and sudden settlement prevention and the construction control measures such as the advance drapery grouting, large feet-lock pipe and sleeve valve pipe grouting at the bottom of the foundation, can effectively avoid disasters in construction. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号