首页 | 本学科首页   官方微博 | 高级检索  
     检索      

同时接送模式下响应型接驳公交运行路径与调度的协调优化
引用本文:王正武,陈涛,宋名群.同时接送模式下响应型接驳公交运行路径与调度的协调优化[J].交通运输工程学报,2019,19(5):139-149.
作者姓名:王正武  陈涛  宋名群
作者单位:长沙理工大学 交通运输工程学院, 湖南 长沙 410114
基金项目:国家自然科学基金项目51678075湖南省重点领域研发计划项目2019SK2171
摘    要:研究了同时接送模式下响应型接驳公交运行路径与车辆调度的协调优化问题, 考虑乘客出行时间窗的个性化, 构建了基于乘客而不是基于途经需求点的车辆路径表示方法; 综合车辆发车和行驶成本、车辆早到和晚到的惩罚成本、票价收入构建了表征系统效益的目标函数, 并以车辆容量、乘客时间窗、车辆运行时间、车辆保有量、发车时间等为约束, 构建了发车间隔、发出车型与车辆路径的一体化优化模型; 针对一体化优化模型的特点, 设计了双遗传算法, 其中染色体为多链编码结构, 染色体交叉方式包含个体内、个体间交叉2种方式; 为了验证同时接送模式的优越性、一体化优化模型及算法的有效性, 进行了算例分析, 对比了同时接送模式与单独接和单独送模式的计算结果, 分析了车辆运行车速、单程运行时间限制、车型比例对响应型接驳公交运营效率的影响。计算结果表明: 在给定的相同乘客需求下, 与单独送和单独接模式相比, 同时接送模式发车次数减少了1次, 所需车辆数减少了2辆, 平均座位利用率提高了8.3%, 运送单位乘客的平均车辆行驶距离降低了11.0%, 运行成本降低了15.9%, 因此, 同时接送模式有效地提高了运营效率; 同时接送模式下, 运行车速、单程运行时间限制、小型车比例分别在基准值附近上下波动15.0%、15.0%、12.5%时, 发车次数、座位平均利用率、目标函数值的最大变化率分别达到了20.0%、15.7%、27.1%, 这些参数对系统运营效率均有显著影响。 

关 键 词:交通管理    协调优化    响应型接驳公交    同时接送    多车型    车辆调度
收稿时间:2019-04-14

Coordinated optimization of operation routes and schedules for responsive feeder transit under simultaneous pick-up and delivery mode
WANG Zheng-wu,CHEN Tao,SONG Ming-qun.Coordinated optimization of operation routes and schedules for responsive feeder transit under simultaneous pick-up and delivery mode[J].Journal of Traffic and Transportation Engineering,2019,19(5):139-149.
Authors:WANG Zheng-wu  CHEN Tao  SONG Ming-qun
Institution:School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, Hunan, China
Abstract:The coordinated optimization problem of operation routes and vehicle schedules for responsive feeder transit under the simultaneous pick-up and delivery mode was studied. The vehicle route representation method based on passengers rather than demand points was devised by considering the personalization of passenger travel time window. The objective function that represents system benefit was constructed by combining the costs of vehicle departure and travel, penalty costs of vehicle early and late arrival, and ticket fares. The vehicle capacity, passenger time window, vehicle running time, vehicle holding quantity and departure time were all taken as constraints, and the integrated optimization model of departure interval, vehicle type and running route was constructed. The double genetic algorithm was designed to solve the integrated optimization model. In this algorithm, the chromosome was coded by multi-chain coding structure, and the chromosome chiasma included two ways of inter-individual and intra-individual. In order to validate the superiority of the simultaneous pick-up and delivery mode, and the effectiveness of the integrated optimization model and the algorithm, several examples were designed to compare the calculation results of the simultaneous pick-up and delivery mode and the separate pick-up and deliver mode. The effects of vehicle speed, single trip running time limit and vehicle composition on the operation efficiency of responsive feeder transit were analyzed. Calculation result shows that under the same passenger demand, compared with the separate pick-up and deliver mode, under the simultaneous pick-up and delivery mode, the departure times reduce by 1, the number of required vehicles reduce by 2, the average seat utilization rate increases by 8.3%, the average vehicle distance required to transport unit passenger reduces by 11.0%, and the operation cost reduces by 15.9%. Therefore, the simultaneous pick-up and delivery mode can effectively improve the operation efficiency. At the same time, under the simultaneous pick-up and delivery mode, when vehicle speed, single trip running time limit, and small vehicle ratio fluctuate by 15.0%, 15.0%, and 12.5% near the reference values, respectively, the maximum change rate of the departure times, the average seat utilization rate, and the objective value reach 20.0%, 15.7%, and 27.1%, respectively, therefore, these parameters have a significant impact on the system operating efficiency. 
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号