首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高速铁路辙叉区钢轨打磨廓形设计方法
引用本文:林凤涛,吴涛,杨洋,庞华飞,邹亮,翁涛涛,王松涛,邓卓鑫.高速铁路辙叉区钢轨打磨廓形设计方法[J].交通运输工程学报,2021,21(6):124-135.
作者姓名:林凤涛  吴涛  杨洋  庞华飞  邹亮  翁涛涛  王松涛  邓卓鑫
作者单位:1.华东交通大学 载运工具与装备教育部重点实验室,江西 南昌 3300132.中车株洲电力机车有限公司,湖南 株洲 4120013.广州铁路职业技术学院,广东 广州 510430
基金项目:国家自然科学基金项目52065021江西省科技厅重点研发计划20212BBE53024
摘    要:以心轨顶宽20、35、50 mm处的辙叉区钢轨关键截面作为研究对象,基于NURBS曲线理论建立辙叉区钢轨廓形重构方法;以关键截面钢轨廓形上若干型值点为设计变量,以打磨材料去除量的减少和脱轨系数的降低为目标,以钢轨廓形几何特征和降低钢轨滚动接触疲劳为约束条件,设计出18号道岔辙叉区钢轨经济性打磨廓形;建立了轮轨接触有限元模型和车辆-轨道耦合动力学模型,进行了轮轨接触应力与动力学指标计算。分析结果表明:优化的打磨廓形接触点分布均匀,具有良好的轮轨接触几何特性;钢轨打磨材料去除量在2号截面处降低了17.2%;各截面Mises应力分别降低了8.7%、8.3%和11.5%,轮轨接触应力降幅分别为12.9%、15.8%和18.0%;列车逆侧向过岔时,轮轨横向力与车体横向振动加速度分别降低了10.3%和15.6%,脱轨系数与轮重减载率分别降低了8.1%和10.6%,疲劳因子降低了12.2%。可见,优化廓形在保证列车运行安全性的同时,提升了列车运行的平稳性以及辙叉区钢轨的使用寿命。 

关 键 词:铁道工程    车辆系统动力学    轮轨关系    轮轨接触    NURBS曲线理论    打磨廓形
收稿时间:2021-06-11

Design method of rail grinding profile in frog area of high-speed railway
LIN Feng-tao,WU Tao,YANG Yang,PANG Hua-fei,ZOU Liang,WENG Tao-tao,WANG Song-tao,DENG Zhuo-xin.Design method of rail grinding profile in frog area of high-speed railway[J].Journal of Traffic and Transportation Engineering,2021,21(6):124-135.
Authors:LIN Feng-tao  WU Tao  YANG Yang  PANG Hua-fei  ZOU Liang  WENG Tao-tao  WANG Song-tao  DENG Zhuo-xin
Institution:1.Key Laboratory of Conveyance and Equipment of Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China2.CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou 412001, Hunan, China3.Guangzhou Railway Polytechnic, Guangzhou 510430, Guangdong, China
Abstract:For the critical section of a rail in the frog area with top widths of 20, 35 and 50 mm of the core rail as the research object, the rail profile reconstruction method was developed to analyze the frog area based on the NURBS curve theory. Several types of data points on the rail profile of the key section were set as design variables, and the reduction of the removal amount of grinding material and derailment coefficient were taken as the objective, and the geometric characteristics of the rail profile and the rolling contact fatigue reduction of the rail were used as constraints, the economic grinding profile of the rail in the frog area of No.18 turnout was designed. The wheel-rail contact finite element model and vehicle-track coupling dynamic model were established, and the wheel-rail contact stresses and dynamics indexes were calculated. Analysis results show that the optimized grinding profile contact points are evenly distributed and have good wheel-rail contact geometric characteristics. The removal amount of the rail grinding material decreases by 17.2 % in section 2. The Mises stresses of each section decrease by 8.7%, 8.3%, and 11.5%, respectively, and the wheel-rail contact stresses decrease by 12.9%, 15.8%, and 18.0%, respectively. When the train reversely passing turnout branch, wheel-rail lateral force and lateral vibration acceleration of the car body decrease by 10.3% and 15.6%, respectively, the derailment coefficient and the wheel-load reduction rate decrease by 8.1% and 10.6%, respectively, and the fatigue index decreases by 12.2%. Therefore the optimized profile not only ensures train operation safety, but also improves train operation stability and the service life of the rail in frog areas. 5 tabs, 14 figs, 26 refs. 
Keywords:
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号