首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高速列车动力学性能研究进展
引用本文:朱海燕,曾庆涛,王宇豪,曾京,邬平波,朱志和,王超文,袁遥,肖乾.高速列车动力学性能研究进展[J].交通运输工程学报,2021,21(3):57-92.
作者姓名:朱海燕  曾庆涛  王宇豪  曾京  邬平波  朱志和  王超文  袁遥  肖乾
作者单位:1.华东交通大学 机电与车辆工程学院,江西 南昌 3300132.西南交通大学牵引动力国家重点实验室,四川 成都 610031
基金项目:国家自然科学基金项目51665015江西省自然科学基金项目20202ACBL204008江西省教育厅科技项目GJJ190308江西省教育厅科技项目GJJ190333江西省教育厅科技项目GJJ200614牵引动力国家重点实验室开放课题TPL2007
摘    要:为更深入全面了解高速列车系统动力学研究现状,综述了高速列车动力学性能对车辆运行稳定性、安全性和平稳性的影响,总结了列车安全评价方法和动力学试验方法在车辆动力学中的应用,基于轮轨间作用力,分析了轮轨磨耗对列车动力学性能的影响,概括了车-桥耦合模型、弓网系统以及列车空气动力模型在车辆系统动力学中的研究内容。分析结果表明:车轮异常磨耗会导致舒适性下降,合理的车轮镟修能有效降低车轮非圆化和车辆系统关键部件的振动,降低车内振动噪声,增加列车运行稳定性、安全性和平稳性;合适的轮对定位刚度和抗蛇行减振器的刚度和阻尼有利于提高列车蛇行运动稳定性和转向架运动临界速度;钢轨波磨严重时会导致钢轨扣件松动,缩短车辆构架和钢轨的使用寿命;通过合理的钢轨廓型打磨可消除曲线波磨,改善轮轨关系;行波效应对车辆安全性影响很大,与相同激励下的各项参数相比,车速为350 km·h-1、行波速度为300 m·s-1时的脱轨系数、轮重减载率和轮轨横向力都有所降低;横风作用下受电弓气动抬升力增大,影响接触网安全,增大弓头阻尼和弓头刚度可改善弓网受流特性。 

关 键 词:高速列车    动力学性能    台架试验    建模仿真    车轮多边形    钢轨磨耗    耦合动力学
收稿时间:2021-01-28

Research progress on dynamics performance of high-speed train
ZHU Hai-yan,ZENG Qing-tao,WANG Yu-hao,ZENG Jing,WU Ping-bo,ZHU Zhi-he,WANG Chao-wen,YUAN Yao,XIAO Qian.Research progress on dynamics performance of high-speed train[J].Journal of Traffic and Transportation Engineering,2021,21(3):57-92.
Authors:ZHU Hai-yan  ZENG Qing-tao  WANG Yu-hao  ZENG Jing  WU Ping-bo  ZHU Zhi-he  WANG Chao-wen  YUAN Yao  XIAO Qian
Institution:1.School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China2.State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
Abstract:To thoroughly investigate the research status of high-speed train system dynamics, the impact of high-speed train dynamics on the stability, safety, and stationarity of vehicle operation were reviewed. The applications of train safety evaluation methods and dynamics test approaches in vehicle dynamics were summarized. Based on the force between the wheel and rail, the influence of wheel-rail wear on the train dynamics performance was evaluated. The research on the vehicle-bridge coupling model, pantograph-net system, and train aerodynamic model in vehicle system dynamics was summarized. Analysis results show that abnormal wheel wear and tearing of the wheels can reduce comfort. Appropriate wheel repair can effectively reduce the non-rounding of the wheel, the vibration of key parts of the vehicle system, and the vibration and noise in the vehicle, while increasing the stability, safety, and stationarity of vehicle operation as well. An appropriate wheelset positioning stiffness, mounted stiffness, and anti-yaw damping are beneficial for improving the hunting motion stability of the vehicle and the critical speed of the bogie. Severe rail corrugation causes the rail fastenings to loosen and thereby shortens the service lifes of the vehicle frame and rail. The reasonable grinding of the rail profile can eliminate the curve corrugation and improve the wheel-rail relationship.Under the same excitation, the traveling wave effect has a greater impact on vehicle safety than other parameters. When the train speed is 350 km·h-1 and the traveling wave speed is 300 m·s-1, derailment coefficient, rate of wheel load reduction, and wheel-rail lateral force all decrease. Crosswinds increase the aerodynamic uplift force on the pantograph and affect the safety of the contact-wire network.Increasing the damping and stiffness of the pantograph head can improve the current-collection characteristics of the pantograph and catenary. 1 tab, 22 figs, 200 refs. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号