首页 | 本学科首页   官方微博 | 高级检索  
     检索      

颗粒阻尼抑制水下航行器轴系纵振模拟试验
引用本文:杨俊,刘正林,刘杰,王建,程启超,邓天扬.颗粒阻尼抑制水下航行器轴系纵振模拟试验[J].交通运输工程学报,2021,21(5):161-176.
作者姓名:杨俊  刘正林  刘杰  王建  程启超  邓天扬
作者单位:1.武汉理工大学 能源与动力工程学院, 湖北 武汉 4300632.武汉第二船舶设计研究所, 湖北 武汉 430064
基金项目:国家自然科学基金项目51379168工信部高技术船舶专项项目CJ02N20
摘    要:在简谐激励条件下,应用轴系颗粒阻尼纵振抑制模拟试验装置研究了旋转工况下的颗粒阻尼减振比;探讨了单腔体多颗粒和多腔体多颗粒时的轴系模拟系统加速度变化,讨论了颗粒的材料、粒径、质量填充比、腔体数量、转速、激励频率与位移等参数对系统减振比的影响规律。研究结果表明:在单腔体多颗粒条件下,填充有铜、钢、橡胶包钢颗粒的系统减振比处于7.83%~8.91%,橡胶颗粒的系统减振比接近于0;铜、钢、橡胶包钢颗粒有明显的抑振效果,颗粒的材料密度和阻尼比越大,抑振效果越好;当颗粒质量填充比为15%时,系统减振比最高为13.77%,但当质量填充比超过15%时,减振比有所降低,故质量填充比一般应根据实际情况控制在15%左右;粒径、转速、激励频率与位移幅值的变化对系统减振比的影响分别为1.76%~8.68%、6.77%~12.50%、4.41%~10.12%与2.19%~7.05%;在多腔体多颗粒工况下,当颗粒总质量填充比和转速一定时,腔体数量对系统减振比有明显影响;当腔体数量为3时,转速为100 r·min-1和质量填充比为25%的最佳系统减振比为22.5%;在多腔体多粒径颗粒工况下,当总质量填充比为10%,转速为50~150 r·min-1的系统减振比波动不大,平均为14.18%,这表明多腔体多粒径组合对转速不十分敏感,具有较好的减振效果,可拓宽转速使用范围。 

关 键 词:载运工具    纵振抑制    模拟试验    颗粒阻尼    减振比    质量填充比    腔体数量
收稿时间:2021-05-07

Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression
YANG Jun,LIU Zheng-lin,LIU Jie,WANG Jian,CHENG Qi-chao,DENG Tian-yang.Simulation test of underwater vehicle shafting based on particle damping in longitudinal vibration suppression[J].Journal of Traffic and Transportation Engineering,2021,21(5):161-176.
Authors:YANG Jun  LIU Zheng-lin  LIU Jie  WANG Jian  CHENG Qi-chao  DENG Tian-yang
Institution:1.School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, Hubei, China2.Wuhan Second Ship Design and Research Institute, Wuhan 430064, Hubei, China
Abstract:Under the condition of simple harmonic excitation, a simulation test device of shafting longitudinal vibration suppression based on the particle damping was used to investigate the vibration reduction ratio of particle damping in a rotating condition. The acceleration variations of shafting simulation system for single- and multiple-cavity particle dampers were explored, and the parameters influencing the vibration reduction ratio of the system, such as material, size and filling ratio of particle, cavity number, rotating speed, frequency, and amplitude of excitation, were examined. Research results show that when there are multiple particles in a single cavity, the vibration reduction ratio of a system filled with copper, steel, and rubber-coated steel particles is between 7.83% and 8.91%, and that of a system filled with rubber particles is close to zero. This indicates that copper, steel, and rubber-coated steel particles have an obvious suppression effect, and the higher the material density and damping ratio of the particles, the better the damping effect. When the particle mass filling ratio is 15%, the maximum vibration reduction ratio of the system is 13.77%. However, when the mass filling ratio exceeds 15%, the vibration damping ratio of the system decreases. Therefore, the mass filling ratio should be controlled at approximately 15% according to the actual situation. The influences of particle size, rotating speed, excitation frequency, and displacement amplitude on the vibration reduction ratio of the system are 1.76%-8.68%, 6.77%-12.50%, 4.41%-10.12%, and 2.19%-7.05%, respectively. Under a multicavity and multiparticle condition, when the total mass filling ratio of the particles and the rotating speed are constant, the cavity number has a significant impact on the vibration reduction ratio of the system. When the cavity number is 3, the best vibration reduction ratio of the system is 22.5% under a rotating speed of 100 r·min-1 and a mass filling ratio of 25%. Under multicavity and multiple particle sizes, when the total mass filling ratio is 10% and the rotating speed is 50-150 r·min-1, the vibration reduction ratio of the system fluctuates little, with an average of 14.18%. This shows that the combined multicavity and multiple-particle-size system is not very sensitive to the rotating speed, and it has a better vibration reduction effect. As a result, the range of the rotating speed can be widened. 14 tabs, 18 figs, 30 refs. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《交通运输工程学报》浏览原始摘要信息
点击此处可从《交通运输工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号