首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance indicators for public transit connectivity in multi-modal transportation networks
Authors:Sabyasachee Mishra  Timothy F Welch  Manoj K Jha
Institution:1. National Center for Smart Growth Research and Education, University of Maryland, College Park, MD 20742, United States;2. Center for Advanced Transportation and Infrastructure Engineering Research, Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251, United States
Abstract:Connectivity plays a crucial role as agencies at the federal and state level focus on expanding the public transit system to meet the demands of a multimodal transportation system. Transit agencies have a need to explore mechanisms to improve connectivity by improving transit service. This requires a systemic approach to develop measures that can prioritize the allocation of funding to locations that provide greater connectivity, or in some cases direct funding towards underperforming areas. The concept of connectivity is well documented in social network literature and to some extent, transportation engineering literature. However, connectivity measures have limited capability to analyze multi-modal public transportation systems which are much more complex in nature than highway networks.In this paper, we propose measures to determine connectivity from a graph theoretical approach for all levels of transit service coverage integrating routes, schedules, socio-economic, demographic and spatial activity patterns. The objective of using connectivity as an indicator is to quantify and evaluate transit service in terms of prioritizing transit locations for funding; providing service delivery strategies, especially for areas with large multi-jurisdictional, multi-modal transit networks; providing an indicator of multi-level transit capacity for planning purposes; assessing the effectiveness and efficiency for node/stop prioritization; and making a user friendly tool to determine locations with highest connectivity while choosing transit as a mode of travel. An example problem shows how the graph theoretical approach can be used as a tool to incorporate transit specific variables in the indicator formulations and compares the advantage of the proposed approach compared to its previous counterparts. Then the proposed framework is applied to the comprehensive transit network in the Washington–Baltimore region. The proposed analysis offers reliable indicators that can be used as tools for determining the transit connectivity of a multimodal transportation network.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号