首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-domain TEBEM method for mean drift force and moment of ships with forward speed under the oblique seas
Authors:Chen  J K  Duan  W Y  Ma  S  Liao  K P
Institution:1.College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
;
Abstract:

A numerical method for solving 3D unsteady potential flow problem of ship advancing in waves is put forward. The flow field is divided into an inner and an outer domain by introducing an artificial matching surface. The inner domain is surrounded by ship wetted surface and matching surface as well as part of the free surface. The free surface condition for the inner domain is formulated by perturbation about the double-body flow or uniform incoming flow assumption. The outer domain is surrounded by matching surface and the rest free surface as well as infinite far-field radiation boundary. The free surface condition for the outer domain is formulated by perturbation about uniform incoming flow. The simple Green function and transient free surface Green function are used to form the boundary integral equation (BIE) for the inner and outer domains, respectively. Taylor Expansion Boundary Element Method (TEBEM) is utilized to solve the double-body flow and inner domain and outer domain unsteady flow BIE. Matching conditions for the inner domain flow and outer domain flow are enforced by the continuity of velocity potential and normal velocity on the matching surface. Direct pressure integration on ship wetted surface is used to obtain the first-order and second-order wave forces (moments). The numerical predictions on the displacement, added resistance, sway mean drift force and yaw mean drift moment of the modified KVLCC2 ship at different forward speeds are investigated by the proposed TEBEM method. It is also compared with the other numerical results. The physical tank experiment results are also developed to validate the accuracy of numerical tank results. Compared with the experiment solutions, a good agreement can be obtained by TEBEM method.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号