首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultimate strength design of stiffened plates under axial compression and bending
Authors:MA Bonello  MK Chryssanthopoulos  PJ Dowling  
Institution:

Department of Civil Engineering, Imperial College of Science, Technology and Medicine, London, UK SW7 2BU

Abstract:The basis for design of stiffened plates under longitudinal compression is outlined and predictions using several codes are compared against numerical results from an inelastic beam-column formulation and test results. In order to explore the inherent differences in column behaviour separately from discrepancies arising due to plate panel behaviour, the code predictions are re-evaluated adopting a common plate panel effective width formulation. On this basis, a critical review of code methods is made and some modifications are proposed.

The effect of the magnitude and direction of applied uniform bending on the axial capacity of stiffened plates is investigated by comparing two alternative design approaches, namely an interaction equation and a method based on the Perry equation, against results from numerical analyses and from rigid plastic theory. The interaction equation is invariably more conservative than the Perry approach but its simplicity tends to be convenient for routine design applications. Finally, results of numerical analyses, together with experimental results from previous studies, on continuous stiffened plates under combined axial compression and lateral pressure are presented and available design guidance is discussed.

Keywords:stiffened plates  ultimate strength  design  codes of practice  buckling  axial compression  bending
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号