首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical transport model for predicting the distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea: the sensitivity of model results to the uncertainties in the magnitudes of metal inputs
Authors:AD Tappin  JD Burton  GE Millward  PJ Statham
Abstract:A new transport model for metals (named NOSTRADAMUS) has been developed to predict concentrations and distributions of Cd, Cu, Ni, Pb and Zn in the southern North Sea. NOSTRADAMUS is comprised of components for water, inorganic and organic suspended particulate matter transport; a primary production module contributes to the latter component. Metal exchange between dissolved (water) and total suspended particulate matter (inorganic + organic) phases is driven by distribution coefficients. Transport is based on an existent 2-D vertically integrated model, incorporating a 35 × 35 km grid. NOSTRADAMUS is largely driven by data obtained during the Natural Environment Research Council North Sea Project (NERC NSP). The sensitivity of model predictions to uncertainties in the magnitudes of metal inputs has been tested. Results are reported for a winter period (January 1989) when plankton production was low. Simulated ranges in concentrations in regions influenced by the largest inflows, i.e. the NE English coast and the Southern Bight, are similar to the ranges in the errors of the concentrations estimated at the northern and southern open sea boundaries of the model. Inclusion of uncertainties with respect to atmospheric (up to ± 54%) and riverine (± 30%) inputs makes little difference to the calculated concentrations of both dissolved and particulate fractions within the southern North Sea. When all the errors associated with the inputs are included there is good agreement between computed and observed concentrations, and that for dissolved and particulate Cd, Cu and Zn, and dissolved Ni and Pb, many of the observations fall within, or are close to, the range of values generated by the model. For particulate Pb, model simulations predict concentrations of the right order, but do not reproduce the large scatter in actual concentrations, with simulated concentrations showing a bias towards lower values compared to those observed. A factor which could have contributed to observed concentrations, and which is not included in the model, is considered to be a substantial benthic input of dissolved lead during this winter period, coupled to a rapid and extensive scavenging of the dissolved lead to particles. Significant reductions in riverine and aeolian inputs of total Cd and Cu of 70% and 50%, respectively, consistent with aims of North Sea Conferences, are predicted to lead to minor decreases (~ 10%) in water column concentrations of dissolved and particulate Cd and Cu, except near river sources, where maximum reductions of ~ 30–40% may occur.
Keywords:models  transport  water quality  trace metals  North Sea
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号